1
|
Sutter PA, Dhari Z, Crocker SJ. Neuroimmunology in globoid cell leukodystrophy: A comprehensive review including treatments, models, and neuroimmune mechanisms underlying neuropathology. J Neuroimmunol 2025; 402:578573. [PMID: 40058166 DOI: 10.1016/j.jneuroim.2025.578573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 04/01/2025]
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a fatal genetic demyelinating disease of the central nervous system (CNS) caused by loss-of-function mutations in galactosylceramidase (GALC). As a result of the loss of GALC enzymatic activity, there is an accumulation of a toxic lipid called galactosylsphingosine, or psychosine. Current treatments have focused on restoring GALC function as a means to reduce psychosine accumulation, which show promise, however, still have limited success at improving behavioral or cognitive deficits in infants with GLD. Recent studies have discovered a role for T cells in GLD, indicating that there is a previously understudied role for the adaptive immune system as a contributing factor to GLD pathophysiology. This review aims to provide a comprehensive discussion of the current field of GLD research including treatment advances and GLD pathophysiology, with a focus on the role of neuroimmunological mechanisms contributing to GLD.
Collapse
Affiliation(s)
- Pearl A Sutter
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Zaenab Dhari
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06032, USA; Mandell Center for Multiple Sclerosis, Mount Sinai Rehabilitation Hospital, Trinity Health of New England, Hartford, CT 06105, USA; Departemnt of Rehabilitative Medicine, Frank H. Netter MD School of Medicine, North Haven, CT 06473, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06032, USA; Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
2
|
Ren X, Jin C, Li Q, Fu C, Fang Y, Xu Z, Liang Z, Wang T. Fatty acid binding proteins-mediated mitochondrial dysfunction in the development of age-related diseases: A review. Int J Biol Macromol 2025; 309:142913. [PMID: 40203912 DOI: 10.1016/j.ijbiomac.2025.142913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Fatty acid-binding proteins (FABPs) act as lipid chaperones and play a role in the pathological processes of various lipid signaling pathways. Mitochondria are crucial for the regulation of lipid metabolism. As an aging marker, lipid-mediated mitochondrial dysfunction has been observed in the etiology of numerous diseases, including neurodegenerative diseases, metabolic syndromes, cardiovascular diseases, and tumorigenesis. Members of the FABP family have been identified to regulate mitochondrial function. Targeting FABPs specifically may provide a promising approach to improve mitochondrial function and treat age-related diseases. This review summarizes the connection between FABPs and mitochondrial function and highlights certain FABPs involved in age-related diseases that hold significant therapeutic promise.
Collapse
Affiliation(s)
- Xingxing Ren
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Chaoyuan Jin
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qilin Li
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Congyi Fu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Yu Fang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Zihang Xu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Zi Liang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Tianshi Wang
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201207, China.
| |
Collapse
|
3
|
Li C, Li B, Qu L, Song R, Liu H, Su S. Progesterone improved the behavior of PC12 cells under OGD/R by reducing FABP5 expression and inhibiting TLR4/NF-κB signaling pathway. J Bioenerg Biomembr 2024; 56:117-124. [PMID: 38105294 PMCID: PMC10995011 DOI: 10.1007/s10863-023-09998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/26/2023] [Indexed: 12/19/2023]
Abstract
Herein, PC12 cells were applied to detect the impact of progesterone under oxygen glucose deprivation/reperfusion (OGD/R) stimulation. The cell proliferation of PC12 cells was evaluated by cell counting kit-8 assay, and the concentrations of MDA, ROS and SOD were examined by their corresponding Enzyme Linked Immunosorbent Assay kits. The invasion and migration properties of PC12 cells were evaluated by transwell and wound healing assays, respectively. The expression patterns of related genes were evaluated by western blot and qPCR. Under OGD/R stimulation, progesterone treatment could elevate the viability of PC12 cells, reduce the levels of MDA and ROS, and elevate the concentration of SOD. Moreover, progesterone treatment could strengthen the invasion and migration abilities of PC12 cells under OGD/R condition, as well as decrease the apoptosis and inflammation. FABP5 expression was significantly increased in PC12 cells under OGD/R stimulation, which was reversed after progesterone stimulation. Under OGD/R stimulation, the protective effects of progesterone on PC12 cells were strengthened after si-FABP5 treatment. The protein levels of TLR4, p-P65 NF-κB, and P65 NF-κB in OGD/R-induced PC12 cells were increased, which were inhibited after progesterone treatment. Progesterone exerted protective effects on PC12 cells by targeting FABP5 under OGD/R stimulation.
Collapse
Affiliation(s)
- Chunlin Li
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jing Shi Road, Lixia District, Jinan, Shandong, 250014, People's Republic of China
| | - Bowen Li
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 16369 Jing Shi Road, Lixia District, Jinan, Shandong, 250014, People's Republic of China
| | - Linglong Qu
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 16369 Jing Shi Road, Lixia District, Jinan, Shandong, 250014, People's Republic of China
| | - Ruichang Song
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 16369 Jing Shi Road, Lixia District, Jinan, Shandong, 250014, People's Republic of China
| | - Hui Liu
- Department of Chinese Internal Medicine, First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, No. 16369 Jing Shi Road, Lixia District, Jinan, Shandong, 250014, People's Republic of China
| | - Shanshan Su
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, Shandong, 250014, People's Republic of China.
| |
Collapse
|
4
|
Kawahata I, Fukunaga K. Pathogenic Impact of Fatty Acid-Binding Proteins in Parkinson's Disease-Potential Biomarkers and Therapeutic Targets. Int J Mol Sci 2023; 24:17037. [PMID: 38069360 PMCID: PMC10707307 DOI: 10.3390/ijms242317037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Parkinson's disease is a neurodegenerative condition characterized by motor dysfunction resulting from the degeneration of dopamine-producing neurons in the midbrain. This dopamine deficiency gives rise to a spectrum of movement-related symptoms, including tremors, rigidity, and bradykinesia. While the precise etiology of Parkinson's disease remains elusive, genetic mutations, protein aggregation, inflammatory processes, and oxidative stress are believed to contribute to its development. In this context, fatty acid-binding proteins (FABPs) in the central nervous system, FABP3, FABP5, and FABP7, impact α-synuclein aggregation, neurotoxicity, and neuroinflammation. These FABPs accumulate in mitochondria during neurodegeneration, disrupting their membrane potential and homeostasis. In particular, FABP3, abundant in nigrostriatal dopaminergic neurons, is responsible for α-synuclein propagation into neurons and intracellular accumulation, affecting the loss of mesencephalic tyrosine hydroxylase protein, a rate-limiting enzyme of dopamine biosynthesis. This review summarizes the characteristics of FABP family proteins and delves into the pathogenic significance of FABPs in the pathogenesis of Parkinson's disease. Furthermore, it examines potential novel therapeutic targets and early diagnostic biomarkers for Parkinson's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
- BRI Pharma Inc., Sendai 982-0804, Japan
| |
Collapse
|
5
|
Gómez J, Artigas L, Valls R, Gervas-Arruga J. An in silico approach to identify early damage biomarker candidates in metachromatic leukodystrophy. Mol Genet Metab Rep 2023; 35:100974. [PMID: 37275681 PMCID: PMC10233284 DOI: 10.1016/j.ymgmr.2023.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 06/07/2023] Open
Abstract
Metachromatic leukodystrophy (MLD) is a rare, autosomal recessive lysosomal storage disease. Deficient activity of arylsulfatase A causes sulfatides to accumulate in cells of different tissues, including those in the central and peripheral nervous systems, leading to progressive demyelination and neurodegeneration. Although there is some association between specific arylsulfatase A alleles and disease severity, genotype-phenotype correlations are not fully understood. We aimed to identify biomarker candidates of early tissue damage in MLD using a modeling approach based on systems biology. A review of the literature was performed in an initial disease characterization step, allowing identification of pathophysiological processes involved in MLD and proteins relating to these processes. Three mathematical models were generated to simulate different stages of MLD at the molecular level: an early pro-inflammatory stage model (including only processes considered to be active in the early stages of disease), a pre-demyelination stage model (including additional processes that are active after some disease progression), and a demyelination stage model (in which all pathophysiological processes are active). The models evaluated 3457 proteins of interest, individually and by pairs through data mining techniques, applying five filters to prioritize biomarkers that could differentiate between the models. Sixteen potential biomarkers were identified, including effectors relating to mitochondrial dysfunction, remyelination, and neurodegeneration. The findings were corroborated in a gene expression data set from T lymphocytes of patients with MLD; all candidates formed combinations that were able to distinguish patients with MLD from controls, and all but one candidate distinguished late-infantile MLD from juvenile MLD as part of a combinatorial biomarker pair. In particular, pro-neuregulin-1 appeared as differential on all comparisons (patients with MLD vs controls and within clinical subtypes); casein kinase II subunit alpha was detected as a potential individual marker within clinical subtypes. These findings provide a panel of biomarker candidates suitable for experimental validation and highlight the utility of mathematical models to identify biomarker candidates of early tissue damage in MLD with a high degree of accuracy and sensitivity.
Collapse
|
6
|
Fatty acid-binding proteins 3 and 5 are involved in the initiation of mitochondrial damage in ischemic neurons. Redox Biol 2022; 59:102547. [PMID: 36481733 PMCID: PMC9727700 DOI: 10.1016/j.redox.2022.102547] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
We have previously shown that a fatty acid-binding protein7 (FABP7) inhibitor ameliorates cerebral ischemia-reperfusion injury in mice, suggesting an association between FABPs and ischemic neuronal injury. However, the precise role of FABPs in ischemic neuronal injury remains unclear. In this study, we investigated the role of FABPs in ischemia-reperfusion neuronal injury. FABP3, FABP5, and FABP7 were upregulated in the ischemic penumbra regions in mice. However, only FABP3 and FABP5 were expressed in injured neurons. Furthermore, FABP3 and FABP5 accumulated in the mitochondria of ischemic neurons. Overexpressing either FABP3 or FABP5 aggravated the reduced mitochondrial membrane potential and induced cell death in human neuroblastoma SH-SY5Y cells during oxidative stress. This damage was mediated by the formation of BAX-containing pores in the mitochondrial membrane. Moreover, FABP5 mediates lipid peroxidation and generates toxic by-products (i.e., 4-HNE) in SH-SY5Y cells. HY11-08 (HY08), a novel FABP3 and 5 inhibitor that does not act on FABP7, significantly reduced cerebral infarct volume and blocked FABP3/5-induced mitochondrial damage, including lipid peroxidation and BAX-related apoptotic signaling. Thus, FABP3 and FABP5 are key players in triggering mitochondrial damage in ischemic neurons. In addition, the novel FABP inhibitor, HY08, may be a potential neuroprotective treatment for ischemic stroke.
Collapse
|
7
|
Vantaggiato L, Shaba E, Carleo A, Bezzini D, Pannuzzo G, Luddi A, Piomboni P, Bini L, Bianchi L. Neurodegenerative Disorder Risk in Krabbe Disease Carriers. Int J Mol Sci 2022; 23:13537. [PMID: 36362324 PMCID: PMC9654610 DOI: 10.3390/ijms232113537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
Abstract
Krabbe disease (KD) is a rare autosomal recessive disorder caused by mutations in the galactocerebrosidase gene (GALC). Defective GALC causes aberrant metabolism of galactolipids present almost exclusively in myelin, with consequent demyelinization and neurodegeneration of the central and peripheral nervous system (NS). KD shares some similar features with other neuropathies and heterozygous carriers of GALC mutations are emerging with an increased risk in developing NS disorders. In this work, we set out to identify possible variations in the proteomic profile of KD-carrier brain to identify altered pathways that may imbalance its homeostasis and that may be associated with neurological disorders. The differential analysis performed on whole brains from 33-day-old twitcher (galc -/-), heterozygous (galc +/-), and wild-type mice highlighted the dysregulation of several multifunctional factors in both heterozygous and twitcher mice. Notably, the KD-carrier mouse, despite its normal phenotype, presents the deregulation of vimentin, receptor of activated protein C kinase 1 (RACK1), myelin basic protein (MBP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP), transitional endoplasmic reticulum ATPase (VCP), and N-myc downstream regulated gene 1 protein (NDRG1) as well as changes in the ubiquitinated-protein pattern. Our findings suggest the carrier may be affected by dysfunctions classically associated with neurodegeneration: (i) alteration of (mechano) signaling and intracellular trafficking, (ii) a generalized affection of proteostasis and lipid metabolism, with possible defects in myelin composition and turnover, and (iii) mitochondrion and energy supply dysfunctions.
Collapse
Affiliation(s)
- Lorenza Vantaggiato
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Enxhi Shaba
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Alfonso Carleo
- Department of Pulmonology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Daiana Bezzini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giovanna Pannuzzo
- Department of Biochemical and Biotechnological Sciences, Section of Physiology, University of Catania, 95121 Catania, Italy
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Luca Bini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
8
|
Guo Q, Kawahata I, Cheng A, Jia W, Wang H, Fukunaga K. Fatty Acid-Binding Proteins: Their Roles in Ischemic Stroke and Potential as Drug Targets. Int J Mol Sci 2022; 23:9648. [PMID: 36077044 PMCID: PMC9455833 DOI: 10.3390/ijms23179648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Stroke is among the leading causes of death and disability worldwide. However, despite long-term research yielding numerous candidate neuroprotective drugs, there remains a lack of effective neuroprotective therapies for ischemic stroke patients. Among the factors contributing to this deficiency could be that single-target therapy is insufficient in addressing the complex and extensive mechanistic basis of ischemic brain injury. In this context, lipids serve as an essential component of multiple biological processes and play important roles in the pathogenesis of numerous common neurological diseases. Moreover, in recent years, fatty acid-binding proteins (FABPs), a family of lipid chaperone proteins, have been discovered to be involved in the onset or development of several neurodegenerative diseases, including Alzheimer's and Parkinson's disease. However, comparatively little attention has focused on the roles played by FABPs in ischemic stroke. We have recently demonstrated that neural tissue-associated FABPs are involved in the pathological mechanism of ischemic brain injury in mice. Here, we review the literature published in the past decade that has reported on the associations between FABPs and ischemia and summarize the relevant regulatory mechanisms of FABPs implicated in ischemic injury. We also propose candidate FABPs that could serve as potential therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Qingyun Guo
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - An Cheng
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Wenbin Jia
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Haoyang Wang
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- BRI Pharma Incorporated, Sendai 982-0804, Japan
| |
Collapse
|
9
|
Nowacki JC, Fields AM, Fu MM. Emerging cellular themes in leukodystrophies. Front Cell Dev Biol 2022; 10:902261. [PMID: 36003149 PMCID: PMC9393611 DOI: 10.3389/fcell.2022.902261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Leukodystrophies are a broad spectrum of neurological disorders that are characterized primarily by deficiencies in myelin formation. Clinical manifestations of leukodystrophies usually appear during childhood and common symptoms include lack of motor coordination, difficulty with or loss of ambulation, issues with vision and/or hearing, cognitive decline, regression in speech skills, and even seizures. Many cases of leukodystrophy can be attributed to genetic mutations, but they have diverse inheritance patterns (e.g., autosomal recessive, autosomal dominant, or X-linked) and some arise from de novo mutations. In this review, we provide an updated overview of 35 types of leukodystrophies and focus on cellular mechanisms that may underlie these disorders. We find common themes in specialized functions in oligodendrocytes, which are specialized producers of membranes and myelin lipids. These mechanisms include myelin protein defects, lipid processing and peroxisome dysfunction, transcriptional and translational dysregulation, disruptions in cytoskeletal organization, and cell junction defects. In addition, non-cell-autonomous factors in astrocytes and microglia, such as autoimmune reactivity, and intercellular communication, may also play a role in leukodystrophy onset. We hope that highlighting these themes in cellular dysfunction in leukodystrophies may yield conceptual insights on future therapeutic approaches.
Collapse
|
10
|
Cardoso S. Special Issue “Mitochondria and Brain Disease”. Biomedicines 2022; 10:biomedicines10081854. [PMID: 36009401 PMCID: PMC9405355 DOI: 10.3390/biomedicines10081854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Susana Cardoso
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Institute for Interdisciplinary Research (IIIU), University of Coimbra, 3030-789 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
11
|
Cheng A, Wang YF, Shinoda Y, Kawahata I, Yamamoto T, Jia WB, Yamamoto H, Mizobata T, Kawata Y, Fukunaga K. Fatty acid-binding protein 7 triggers α-synuclein oligomerization in glial cells and oligodendrocytes associated with oxidative stress. Acta Pharmacol Sin 2022; 43:552-562. [PMID: 33935286 PMCID: PMC8888578 DOI: 10.1038/s41401-021-00675-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/31/2021] [Indexed: 02/03/2023]
Abstract
We previously show that fatty acid-binding protein 3 (FABP3) triggers α-synuclein (Syn) accumulation and induces dopamine neuronal cell death in Parkinson disease mouse model. But the role of fatty acid-binding protein 7 (FABP7) in the brain remains unclear. In this study we investigated whether FABP7 was involved in synucleinopathies. We showed that FABP7 was co-localized and formed a complex with Syn in Syn-transfected U251 human glioblastoma cells, and treatment with arachidonic acid (100 M) significantly promoted FABP7-induced Syn aggregation, which was associated with cell death. We demonstrated that synthetic FABP7 ligand 6 displayed a high affinity against FABP7 with Kd value of 209 nM assessed in 8-anilinonaphthalene-1-sulfonic acid (ANS) assay; ligand 6 improved U251 cell survival via disrupting the FABP7-Syn interaction. We showed that activation of phospholipase A2 (PLA2) by psychosine (10 M) triggered oligomerization of endogenous Syn and FABP7, and induced cell death in both KG-1C human oligodendroglia cells and oligodendrocyte precursor cells (OPCs). FABP7 ligand 6 (1 M) significantly decreased Syn oligomerization and aggregation thereby prevented KG-1C and OPC cell death. This study demonstrates that FABP7 triggers α-synuclein oligomerization through oxidative stress, while FABP7 ligand 6 can inhibit FABP7-induced Syn oligomerization and aggregation, thereby rescuing glial cells and oligodendrocytes from cell death.
Collapse
Affiliation(s)
- An Cheng
- grid.69566.3a0000 0001 2248 6943Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yi-fei Wang
- grid.69566.3a0000 0001 2248 6943Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuharu Shinoda
- grid.69566.3a0000 0001 2248 6943Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ichiro Kawahata
- grid.69566.3a0000 0001 2248 6943Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tetsunori Yamamoto
- grid.69566.3a0000 0001 2248 6943Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Wen-bin Jia
- grid.69566.3a0000 0001 2248 6943Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hanae Yamamoto
- grid.265107.70000 0001 0663 5064Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Tomohiro Mizobata
- grid.265107.70000 0001 0663 5064Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Yasushi Kawata
- grid.265107.70000 0001 0663 5064Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
12
|
Kawahata I, Fukunaga K. Impact of fatty acid-binding proteins and dopamine receptors on α-synucleinopathy. J Pharmacol Sci 2022; 148:248-254. [DOI: 10.1016/j.jphs.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
|
13
|
Cheng A, Fukunaga K. [Role of fatty acid-binding protein 7 and novel therapeutic approach in synucleinopathies]. Nihon Yakurigaku Zasshi 2022; 157:396-400. [PMID: 36328545 DOI: 10.1254/fpj.22056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The synucleinopathies are neurodegenerative disease caused by abnormal accumulation of the 140-amino acid-containing protein α-synuclein (αSyn), including Parkinson's disease (PD), diffuse Lewy body dementia (DLBD), and multiple system atrophy (MSA). In patients with PD and DLBD, αSyn is misfolded in neurons, and its aggregation forms Lewy bodies (LB) and Lewy neurites (LN). On the other hand, in patients with MSA, αSyn accumulates primarily in oligodendrocytes (OLGs) and forms glial inclusion bodies (GCIs), a typical pathological feature of MSA. We recently demonstrated a making complex between αSyn and fatty acid-binding proteins (FABPs) in synucleinopathies and received wide attention. Fatty acid-binding protein 3 (FABP3) in dopamine nerves, and fatty acid-binding protein 7 (FABP7) in glial cells promoted αSyn accumulation and aggregation, respectively and caused cell death. Here, we introduced the current studies about the role of αSyn and FABP7 in MSA and novel therapeutic approach targeting for FABP7.
Collapse
Affiliation(s)
- An Cheng
- Department of CNS drug innovation, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Kohji Fukunaga
- Department of CNS drug innovation, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
14
|
Guan PP, Cao LL, Yang Y, Wang P. Calcium Ions Aggravate Alzheimer's Disease Through the Aberrant Activation of Neuronal Networks, Leading to Synaptic and Cognitive Deficits. Front Mol Neurosci 2021; 14:757515. [PMID: 34924952 PMCID: PMC8674839 DOI: 10.3389/fnmol.2021.757515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by the production and deposition of β-amyloid protein (Aβ) and hyperphosphorylated tau, leading to the formation of β-amyloid plaques (APs) and neurofibrillary tangles (NFTs). Although calcium ions (Ca2+) promote the formation of APs and NFTs, no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD has been published. Therefore, the current review aimed to fill the gaps between elevated Ca2+ levels and the pathogenesis of AD. Specifically, we mainly focus on the molecular mechanisms by which Ca2+ affects the neuronal networks of neuroinflammation, neuronal injury, neurogenesis, neurotoxicity, neuroprotection, and autophagy. Furthermore, the roles of Ca2+ transporters located in the cell membrane, endoplasmic reticulum (ER), mitochondria and lysosome in mediating the effects of Ca2+ on activating neuronal networks that ultimately contribute to the development and progression of AD are discussed. Finally, the drug candidates derived from herbs used as food or seasoning in Chinese daily life are summarized to provide a theoretical basis for improving the clinical treatment of AD.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Long-Long Cao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yi Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
15
|
A novel fatty acid-binding protein 5 and 7 inhibitor ameliorates oligodendrocyte injury in multiple sclerosis mouse models. EBioMedicine 2021; 72:103582. [PMID: 34624687 PMCID: PMC8502714 DOI: 10.1016/j.ebiom.2021.103582] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease characterised by the demyelination of mature oligodendrocytes in the central nervous system. Recently, several studies have indicated the vital roles of fatty acid-binding proteins (FABPs) 5 and 7 in regulating the immune response. METHODS We assessed a novel FABP5/FABP7 inhibitor, FABP ligand 6 (MF 6), as a potential therapeutic for MS therapy. In vivo, we established MOG35-55-administered experimental autoimmune encephalomyelitis (EAE) mice as an MS mouse model, followed by prophylactic and symptomatic treatment with MF 6. The therapeutic effect of MF 6 was determined using behavioural and biochemical analyses. In vitro, MF 6 effects on astrocytes and oligodendrocytes were examined using both astrocyte primary culture and KG-1C cell lines. FINDINGS Prophylactic and symptomatic MF 6 therapy reduced myelin loss and clinical EAE symptoms. Furthermore, oxidative stress levels and GFAP-positive and ionised calcium-binding adaptor protein-1-positive cells were reduced in the spinal cord of MF 6-treated mice. In addition, MF 6 attenuated lipopolysaccharide-stimulated interleukin-1β and tumour necrosis factor-α accumulation in primary astrocyte culture. Moreover, MF 6 indicated a powerful protective function for the mitochondria in the oligodendrocytes of EAE mice via FABP5 inhibition. INTERPRETATIONS MF 6 is a potent inhibitor of FABP5 and FABP7; targeted inhibition of the two proteins may confer potential therapeutic effects in MS via immune inhibition and oligodendrocyte protection. FUNDING This work was supported by the Strategic Research Program for Brain Sciences from the Japan Agency for Medical Research and Development (JP17dm0107071, JP18dm0107071, JP19dm0107071, and JP20dm0107071).
Collapse
|
16
|
Cheng A, Jia W, Kawahata I, Fukunaga K. Impact of Fatty Acid-Binding Proteins in α-Synuclein-Induced Mitochondrial Injury in Synucleinopathy. Biomedicines 2021; 9:biomedicines9050560. [PMID: 34067791 PMCID: PMC8156290 DOI: 10.3390/biomedicines9050560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Synucleinopathies are diverse diseases with motor and cognitive dysfunction due to progressive neuronal loss or demyelination, due to oligodendrocyte loss in the brain. While the etiology of neurodegenerative disorders (NDDs) is likely multifactorial, mitochondrial injury is one of the most vital factors in neuronal loss and oligodendrocyte dysfunction, especially in Parkinson’s disease, dementia with Lewy body, multiple system atrophy, and Krabbe disease. In recent years, the abnormal accumulation of highly neurotoxic α-synuclein in the mitochondrial membrane, which leads to mitochondrial dysfunction, was well studied. Furthermore, fatty acid-binding proteins (FABPs), which are members of a superfamily and are essential in fatty acid trafficking, were reported to trigger α-synuclein oligomerization in neurons and glial cells and to target the mitochondrial outer membrane, thereby causing mitochondrial loss. Here, we provide an updated overview of recent findings on FABP and α-synuclein interactions and mitochondrial injury in NDDs.
Collapse
Affiliation(s)
- An Cheng
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
| | - Wenbin Jia
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
| | - Ichiro Kawahata
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
| | - Kohji Fukunaga
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
- Correspondence: ; Tel.: +81-(22)-795-6837
| |
Collapse
|
17
|
Guo Q, Kawahata I, Degawa T, Ikeda-Matsuo Y, Sun M, Han F, Fukunaga K. Fatty Acid-Binding Proteins Aggravate Cerebral Ischemia-Reperfusion Injury in Mice. Biomedicines 2021; 9:529. [PMID: 34068550 PMCID: PMC8150391 DOI: 10.3390/biomedicines9050529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
Fatty acid-binding proteins (FABPs) regulate the intracellular dynamics of fatty acids, mediate lipid metabolism and participate in signaling processes. However, the therapeutic efficacy of targeting FABPs as novel therapeutic targets for cerebral ischemia is not well established. Previously, we synthesized a novel FABP inhibitor, i.e., FABP ligand 6 [4-(2-(5-(2-chlorophenyl)-1-(4-isopropylphenyl)-1H-pyrazol-3-yl)-4-fluorophenoxy)butanoic acid] (referred to here as MF6). In this study, we analyzed the ability of MF6 to ameliorate transient middle cerebral artery occlusion (tMCAO) and reperfusion-induced injury in mice. A single MF6 administration (3.0 mg/kg, per os) at 0.5 h post-reperfusion effectively reduced brain infarct volumes and neurological deficits. The protein-expression levels of FABP3, FABP5 and FABP7 in the brain gradually increased after tMCAO. Importantly, MF6 significantly suppressed infarct volumes and the elevation of FABP-expression levels at 12 h post-reperfusion. MF6 also inhibited the promotor activity of FABP5 in human neuroblastoma cells (SH-SY5Y). These data suggest that FABPs elevated infarct volumes after ischemic stroke and that inhibiting FABPs ameliorated the ischemic injury. Moreover, MF6 suppressed the inflammation-associated prostaglandin E2 levels through microsomal prostaglandin E synthase-1 expression in the ischemic hemispheres. Taken together, the results imply that the FABP inhibitor MF6 can potentially serve as a neuroprotective therapeutic for ischemic stroke.
Collapse
Affiliation(s)
- Qingyun Guo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; (Q.G.); (I.K.); (T.D.); (M.S.)
| | - Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; (Q.G.); (I.K.); (T.D.); (M.S.)
| | - Tomohide Degawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; (Q.G.); (I.K.); (T.D.); (M.S.)
| | - Yuri Ikeda-Matsuo
- Laboratory of Pharmacology, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanagawa-Machi, Kanazawa 920-1181, Japan;
| | - Meiling Sun
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; (Q.G.); (I.K.); (T.D.); (M.S.)
| | - Feng Han
- School of Pharmacy, Nanjing Medical School, Nanjing 211166, China;
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; (Q.G.); (I.K.); (T.D.); (M.S.)
| |
Collapse
|
18
|
Wang Y, Shinoda Y, Cheng A, Kawahata I, Fukunaga K. Epidermal Fatty Acid-Binding Protein 5 (FABP5) Involvement in Alpha-Synuclein-Induced Mitochondrial Injury under Oxidative Stress. Biomedicines 2021; 9:biomedicines9020110. [PMID: 33499263 PMCID: PMC7911662 DOI: 10.3390/biomedicines9020110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
The accumulation of α-synuclein (αSyn) has been implicated as a causal factor in the pathogenesis of Parkinson’s disease (PD). There is growing evidence that supports mitochondrial dysfunction as a potential primary cause of dopaminergic neuronal death in PD. Here, we focused on reciprocal interactions between αSyn aggregation and mitochondrial injury induced by oxidative stress. We further investigated whether epidermal fatty acid-binding protein 5 (FABP5) is related to αSyn oligomerization/aggregation and subsequent disturbances in mitochondrial function in neuronal cells. In the presence of rotenone, a mitochondrial respiratory chain complex I inhibitor, co-overexpression of FABP5 with αSyn significantly decreased the viability of Neuro-2A cells compared to that of αSyn alone. Under these conditions, FABP5 co-localized with αSyn in the mitochondria, thereby reducing mitochondrial membrane potential. Furthermore, we confirmed that pharmacological inhibition of FABP5 by its ligand prevented αSyn accumulation in mitochondria, which led to cell death rescue. These results suggested that FABP5 is crucial for mitochondrial dysfunction related to αSyn oligomerization/aggregation in the mitochondria induced by oxidative stress in neurons.
Collapse
|