1
|
Ma Y, Wang X, Lin S, King L, Liu L. The Potential Role of Advanced Glycation End Products in the Development of Kidney Disease. Nutrients 2025; 17:758. [PMID: 40077627 PMCID: PMC11902189 DOI: 10.3390/nu17050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Advanced glycation end products (AGEs) represent a class of toxic and irreversible compounds formed through non-enzymatic reactions between proteins or lipids and carbonyl compounds. AGEs can arise endogenously under normal metabolic conditions and in pathological states such as diabetes, kidney disease, and inflammatory disorders. Additionally, they can be obtained exogenously through dietary intake, particularly from foods high in fat or sugar, as well as grilled and processed items. AGEs accumulate in various organs and have been increasingly recognized as significant contributors to the progression of numerous diseases, particularly kidney disease. As the kidney plays a crucial role in AGE metabolism and excretion, it is highly susceptible to AGE-induced damage. In this review, we provide a comprehensive discussion on the role of AGEs in the onset and progression of various kidney diseases, including diabetic nephropathy, chronic kidney disease, and acute kidney injury. We explore the potential biological mechanisms involved, such as AGE accumulation, the AGEs-RAGE axis, oxidative stress, inflammation, gut microbiota dysbiosis, and AGE-induced DNA damage. Furthermore, we discuss recent findings on the metabolic characteristics of AGEs in vivo and their pathogenic impact on renal function. Additionally, we examine the clinical significance of AGEs in the early diagnosis, treatment, and prognosis of kidney diseases, highlighting their potential as biomarkers and therapeutic targets. By integrating recent advancements in AGE research, this review aims to provide new insights and strategies for mitigating AGE-related renal damage and improving kidney disease management.
Collapse
Affiliation(s)
- Yibin Ma
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.M.); (X.W.); (S.L.); (L.K.)
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinyu Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.M.); (X.W.); (S.L.); (L.K.)
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shan Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.M.); (X.W.); (S.L.); (L.K.)
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei King
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.M.); (X.W.); (S.L.); (L.K.)
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.M.); (X.W.); (S.L.); (L.K.)
- Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Chermiti R, Burtey S, Dou L. Role of Uremic Toxins in Vascular Inflammation Associated with Chronic Kidney Disease. J Clin Med 2024; 13:7149. [PMID: 39685608 DOI: 10.3390/jcm13237149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiovascular disease (CVD) is a major complication of chronic kidney disease (CKD), despite improvements in patient care. Vascular inflammation is a crucial process in the pathogenesis of CVD and a critical factor in the cardiovascular complications in CKD patients. CKD promotes a pro-inflammatory environment that impacts the vascular wall, leading to endothelial dysfunction, increased oxidative stress, and vascular remodeling. The uremic toxins that accumulate as kidney function declines are key contributors to vascular inflammatory processes. Our review will examine how CKD leads to vascular inflammation, paving the way to CVD. We will provide an overview of the mechanisms of vascular inflammation induced by uremic toxins, with a particular focus on those derived from tryptophan metabolism. These toxins, along with their receptor, the aryl hydrocarbon receptor (AHR), have emerged as key players linking inflammation and thrombosis. A deeper understanding of the mechanisms underlying inflammation in CKD, particularly those driven by uremic toxins, could reveal valuable therapeutic targets to alleviate the burden of CVD in CKD patients.
Collapse
Affiliation(s)
- Rania Chermiti
- C2VN, Aix-Marseille University, INSERM, INRAE, 13005 Marseille, France
| | - Stéphane Burtey
- C2VN, Aix-Marseille University, INSERM, INRAE, 13005 Marseille, France
- Centre de Néphrologie et Transplantation Rénale, APHM, Hôpital Conception, 13005 Marseille, France
| | - Laetitia Dou
- C2VN, Aix-Marseille University, INSERM, INRAE, 13005 Marseille, France
| |
Collapse
|
3
|
Buoli M, Dozio E, Caldiroli L, Armelloni S, Vianello E, Corsi Romanelli M, Castellano G, Vettoretti S. Clinical Factors and Biomarkers Associated with Depressive Disorders in Older Patients Affected by Chronic Kidney Disease (CKD): Does the Advanced Glycation End Products (AGEs)/RAGE (Receptor for AGEs) System Play Any Role? Geriatrics (Basel) 2024; 9:99. [PMID: 39195129 DOI: 10.3390/geriatrics9040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Depressive disorders are highly prevalent among subjects suffering from chronic kidney disease (CKD). The aim of the present study is to evaluate clinical and biochemical factors associated with depressive disorders in a sample of older CKD patients, with a focus on advanced glycation end products (AGEs) and their soluble receptors (sRAGEs). A total of 115 older subjects affected by CKD (stages 3 to 5, not in dialysis) were selected for this study. These patients were divided into two groups according to the presence of depressive disorders defined by a score ≥ 10 on the 30-item Geriatric Depression Scale (GDS). The two groups were compared by independent sample t tests for continuous variables and χ2 tests for qualitative ones. Significant variables at univariate analyses were then inserted as predictors of a binary logistic regression model, with the presence or absence of depressive disorders as a dependent variable. The binary logistic regression model showed that patients with concomitant depressive disorders were more frequently of female gender (p < 0.01) and had lower MCP1 (p < 0.01) and AGE circulating levels (p < 0.01) than their counterparts. Depressive disorders in older CKD patients are more prevalent in women and seem to be inversely associated with systemic inflammation and circulating AGEs.
Collapse
Affiliation(s)
- Massimiliano Buoli
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Elena Dozio
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milan, Italy
- Experimental Laboratory for Research on Organ Damage Biomarkers, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Lara Caldiroli
- Unit of Nephrology Dialysis and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Silvia Armelloni
- Unit of Nephrology Dialysis and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Elena Vianello
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milan, Italy
- Experimental Laboratory for Research on Organ Damage Biomarkers, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Massimiliano Corsi Romanelli
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milan, Italy
- Department of Experimental and Clinical Pathology, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Giuseppe Castellano
- Unit of Nephrology Dialysis and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Simone Vettoretti
- Unit of Nephrology Dialysis and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
4
|
Si S, Liu H, Xu L, Zhan S. Identification of novel therapeutic targets for chronic kidney disease and kidney function by integrating multi-omics proteome with transcriptome. Genome Med 2024; 16:84. [PMID: 38898508 PMCID: PMC11186236 DOI: 10.1186/s13073-024-01356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a progressive disease for which there is no effective cure. We aimed to identify potential drug targets for CKD and kidney function by integrating plasma proteome and transcriptome. METHODS We designed a comprehensive analysis pipeline involving two-sample Mendelian randomization (MR) (for proteins), summary-based MR (SMR) (for mRNA), and colocalization (for coding genes) to identify potential multi-omics biomarkers for CKD and combined the protein-protein interaction, Gene Ontology (GO), and single-cell annotation to explore the potential biological roles. The outcomes included CKD, extensive kidney function phenotypes, and different CKD clinical types (IgA nephropathy, chronic glomerulonephritis, chronic tubulointerstitial nephritis, membranous nephropathy, nephrotic syndrome, and diabetic nephropathy). RESULTS Leveraging pQTLs of 3032 proteins from 3 large-scale GWASs and corresponding blood- and tissue-specific eQTLs, we identified 32 proteins associated with CKD, which were validated across diverse CKD datasets, kidney function indicators, and clinical types. Notably, 12 proteins with prior MR support, including fibroblast growth factor 5 (FGF5), isopentenyl-diphosphate delta-isomerase 2 (IDI2), inhibin beta C chain (INHBC), butyrophilin subfamily 3 member A2 (BTN3A2), BTN3A3, uromodulin (UMOD), complement component 4A (C4a), C4b, centrosomal protein of 170 kDa (CEP170), serologically defined colon cancer antigen 8 (SDCCAG8), MHC class I polypeptide-related sequence B (MICB), and liver-expressed antimicrobial peptide 2 (LEAP2), were confirmed. To our knowledge, 20 novel causal proteins have not been previously reported. Five novel proteins, namely, GCKR (OR 1.17, 95% CI 1.10-1.24), IGFBP-5 (OR 0.43, 95% CI 0.29-0.62), sRAGE (OR 1.14, 95% CI 1.07-1.22), GNPTG (OR 0.90, 95% CI 0.86-0.95), and YOD1 (OR 1.39, 95% CI 1.18-1.64,) passed the MR, SMR, and colocalization analysis. The other 15 proteins were also candidate targets (GATM, AIF1L, DQA2, PFKFB2, NFATC1, activin AC, Apo A-IV, MFAP4, DJC10, C2CD2L, TCEA2, HLA-E, PLD3, AIF1, and GMPR1). These proteins interact with each other, and their coding genes were mainly enrichment in immunity-related pathways or presented specificity across tissues, kidney-related tissue cells, and kidney single cells. CONCLUSIONS Our integrated analysis of plasma proteome and transcriptome data identifies 32 potential therapeutic targets for CKD, kidney function, and specific CKD clinical types, offering potential targets for the development of novel immunotherapies, combination therapies, or targeted interventions.
Collapse
Affiliation(s)
- Shucheng Si
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Hongyan Liu
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Lu Xu
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Siyan Zhan
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China.
- Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
- Institute for Artificial Intelligence, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Oliveira AL, de Oliveira MG, Mónica FZ, Antunes E. Methylglyoxal and Advanced Glycation End Products (AGEs): Targets for the Prevention and Treatment of Diabetes-Associated Bladder Dysfunction? Biomedicines 2024; 12:939. [PMID: 38790901 PMCID: PMC11118115 DOI: 10.3390/biomedicines12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Methylglyoxal (MGO) is a highly reactive α-dicarbonyl compound formed endogenously from 3-carbon glycolytic intermediates. Methylglyoxal accumulated in plasma and urine of hyperglycemic and diabetic individuals acts as a potent peptide glycation molecule, giving rise to advanced glycation end products (AGEs) like arginine-derived hydroimidazolone (MG-H1) and carboxyethyl-lysine (CEL). Methylglyoxal-derived AGEs exert their effects mostly via activation of RAGE, a cell surface receptor that initiates multiple intracellular signaling pathways, favoring a pro-oxidant environment through NADPH oxidase activation and generation of high levels of reactive oxygen species (ROS). Diabetic bladder dysfunction is a bothersome urological complication in patients with poorly controlled diabetes mellitus and may comprise overactive bladder, urge incontinence, poor emptying, dribbling, incomplete emptying of the bladder, and urinary retention. Preclinical models of type 1 and type 2 diabetes have further confirmed the relationship between diabetes and voiding dysfunction. Interestingly, healthy mice supplemented with MGO for prolonged periods exhibit in vivo and in vitro bladder dysfunction, which is accompanied by increased AGE formation and RAGE expression, as well as by ROS overproduction in bladder tissues. Drugs reported to scavenge MGO and to inactivate AGEs like metformin, polyphenols, and alagebrium (ALT-711) have shown favorable outcomes on bladder dysfunction in diabetic obese leptin-deficient and MGO-exposed mice. Therefore, MGO, AGEs, and RAGE levels may be critically involved in the pathogenesis of bladder dysfunction in diabetic individuals. However, there are no clinical trials designed to test drugs that selectively inhibit the MGO-AGEs-RAGE signaling, aiming to reduce the manifestations of diabetes-associated bladder dysfunction. This review summarizes the current literature on the role of MGO-AGEs-RAGE-ROS axis in diabetes-associated bladder dysfunction. Drugs that directly inactivate MGO and ameliorate bladder dysfunction are also reviewed here.
Collapse
Affiliation(s)
| | | | | | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (A.L.O.); (M.G.d.O.); (F.Z.M.)
| |
Collapse
|
6
|
Bronowicka-Szydełko A, Gostomska-Pampuch K, Kuzan A, Pietkiewicz J, Krzystek-Korpacka M, Gamian A. Effect of advanced glycation end-products in a wide range of medical problems including COVID-19. Adv Med Sci 2024; 69:36-50. [PMID: 38335908 DOI: 10.1016/j.advms.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Glycation is a physiological process that determines the aging of the organism, while in states of metabolic disorders it is significantly intensified. High concentrations of compounds such as reducing sugars or reactive aldehydes derived from lipid oxidation, occurring for example in diabetes, atherosclerosis, dyslipidemia, obesity or metabolic syndrome, lead to increased glycation of proteins, lipids and nucleic acids. The level of advanced glycation end-products (AGEs) in the body depends on rapidity of their production and the rate of their removal by the urinary system. AGEs, accumulated in the extracellular matrix of the blood vessels and other organs, cause irreversible changes in the biochemical and biomechanical properties of tissues. As a consequence, micro- and macroangiopathies appear in the system, and may contribute to the organ failure, like kidneys and heart. Elevated levels of AGEs also increase the risk of Alzheimer's disease and various cancers. In this paper, we propose a new classification due to modified amino acid residues: arginyl-AGEs, monolysyl-AGEs and lysyl-arginyl-AGEs and dilysyl-AGEs. Furthermore, we describe in detail the effect of AGEs on the pathogenesis of metabolic and old age diseases, such as diabetic complications, atherosclerosis and neurodegenerative diseases. We summarize the currently available data on the diagnostic value of AGEs and present the AGEs as a therapeutic goal in a wide range of medical problems, including SARS-CoV-2 infection and so-called long COVID.
Collapse
Affiliation(s)
| | | | - Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland.
| | - Jadwiga Pietkiewicz
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
7
|
Mohtashamian A, Soleimani A, Gilasi HR, Kheiripour N, Moeini Taba SM, Sharifi N. Association of Zinc Status with Matrix Metalloproteinases, Advanced Glycation End-Products, and Blood Pressure in Patients with Chronic Kidney Disease. Biol Trace Elem Res 2023; 201:4275-4285. [PMID: 36515817 DOI: 10.1007/s12011-022-03524-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Inflammation, oxidative stress, and hypertension trigger the development of chronic kidney disease (CKD). Zinc is known to have antioxidant and anti-inflammatory properties and a possible role in regulating blood pressure. The aim of this study was to investigate the correlation of serum zinc with matrix metalloproteinase-2 and-9 (MMP-2, MMP-9), advanced glycation end products (AGEs), and blood pressure in patients with CKD. This cross-sectional study included 90 patients with CKD. Serum zinc and the levels of MMP-2, MMP-9, AGEs, and creatinine were measured using validated biochemical methods. Three 24-h food recalls were completed to evaluate dietary zinc intake. Systolic and diastolic blood pressure (SBP, DBP) were measured using a digital sphygmomanometer. Participants' mean age was 60.68 ± 8.81 years. The prevalence of zinc deficiency in our participants was 10%. Serum zinc was negatively correlated with MMP-9 (r = - 0.231, p = 0.032) and creatinine (r = - 0.304, p = 0.004). However, after adjusting for confounding variables, the association between serum zinc and MMP-9 was near the significance level (β = - 0.174, p = 0.09) and zinc remained in the model as one of the predictors. Serum zinc was positively correlated with the dietary intake of zinc (r = 0.241, p = 0.025) and estimated glomerular filtration rate (eGFR) (r = 0.259, p = 0.015). In conclusion, our results showed that serum zinc might be one of the predictors of serum MMP-9 in patients with CKD. In addition, serum zinc was positively associated with its dietary intake and eGFR. Future longitudinal studies or clinical trials are required to reveal any causal association between zinc status and profibrotic or inflammatory biomarkers among patients with CKD.
Collapse
Affiliation(s)
- Abbas Mohtashamian
- Student Research Committee, Department of Nutrition, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Soleimani
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Gilasi
- Department of Epidemiology and Biostatistics, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Basic Science Research Institute, Kashan University of Medical Sciences, Kashan, 87159-734741, Iran
| | - Seyed Masoud Moeini Taba
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Nasrin Sharifi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Basic Science Research Institute, Kashan University of Medical Sciences, Kashan, 87159-734741, Iran.
| |
Collapse
|
8
|
Shi L, Deng Y, Luo D, Li L, Kuang X, Qi A, Fu B. Exploration of the possible mechanisms of Ling Gui Zhu Gan decoction in nephrotic syndrome based on network pharmacology, molecular docking and molecular dynamics simulation. Medicine (Baltimore) 2023; 102:e34446. [PMID: 37478256 PMCID: PMC10662869 DOI: 10.1097/md.0000000000034446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/30/2023] [Indexed: 07/23/2023] Open
Abstract
This study aimed to explore the possible mechanisms of Ling Gui Zhu Gan decoction (LGZGD) in the treatment of nephrotic syndrome (NS) using network pharmacology combined with molecular docking and molecular dynamics simulation. The active ingredients of LGZGD and their targets were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Swiss Target Prediction database. The NS targets were retrieved from Genecards, OMIM and Drugbank databases. Next, the intersecting targets of drug and disease were imported into the String database for protein-protein interaction network analysis, and the core targets were identified through topological analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed in the Metascape platform. Finally, molecular docking and molecular dynamics simulation were performed for further validation. The network analysis showed that 109 active ingredients of LGZGD were associated with 105 targets in NS. The key active ingredients (quercetin, kaempferol, naringenin, licochalcone A, formononetin, beta-sitosterol) and the core targets (IL6, AKT1, TNF, VEGFA, TP53, JUN, IL1B, CASP3, EGFR, and STAT3) were further identified. Enrichment analysis indicated that multiple biological processes and pathways, including AGE-RAGE, PI3K-Akt, JAK-STAT, and HIF-1 signaling pathways, might be regulated by LGZGD in the treatment of NS. Molecular docking and molecular dynamics simulation results further indicated that the key active ingredients of LGZGD could stably bind to the core targets through hydrogen bonding and hydrophobic interaction. This study demonstrates that the active ingredients of LGZGD may regulate multiple targets, biological processes and signaling pathways in NS. Our findings may provide a theoretical basis for further studies on LGZGD in the treatment of NS.
Collapse
Affiliation(s)
- Li Shi
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yuanjun Deng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Denggui Luo
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Lei Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xuyi Kuang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Airong Qi
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bo Fu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Reynaert NL, Vanfleteren LEGW, Perkins TN. The AGE-RAGE Axis and the Pathophysiology of Multimorbidity in COPD. J Clin Med 2023; 12:jcm12103366. [PMID: 37240472 DOI: 10.3390/jcm12103366] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease of the airways and lungs due to an enhanced inflammatory response, commonly caused by cigarette smoking. Patients with COPD are often multimorbid, as they commonly suffer from multiple chronic (inflammatory) conditions. This intensifies the burden of individual diseases, negatively affects quality of life, and complicates disease management. COPD and comorbidities share genetic and lifestyle-related risk factors and pathobiological mechanisms, including chronic inflammation and oxidative stress. The receptor for advanced glycation end products (RAGE) is an important driver of chronic inflammation. Advanced glycation end products (AGEs) are RAGE ligands that accumulate due to aging, inflammation, oxidative stress, and carbohydrate metabolism. AGEs cause further inflammation and oxidative stress through RAGE, but also through RAGE-independent mechanisms. This review describes the complexity of RAGE signaling and the causes of AGE accumulation, followed by a comprehensive overview of alterations reported on AGEs and RAGE in COPD and in important co-morbidities. Furthermore, it describes the mechanisms by which AGEs and RAGE contribute to the pathophysiology of individual disease conditions and how they execute crosstalk between organ systems. A section on therapeutic strategies that target AGEs and RAGE and could alleviate patients from multimorbid conditions using single therapeutics concludes this review.
Collapse
Affiliation(s)
- Niki L Reynaert
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Lowie E G W Vanfleteren
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Timothy N Perkins
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
10
|
Dozio E, Caldiroli L, Molinari P, Castellano G, Delfrate NW, Romanelli MMC, Vettoretti S. Accelerated AGEing: The Impact of Advanced Glycation End Products on the Prognosis of Chronic Kidney Disease. Antioxidants (Basel) 2023; 12:antiox12030584. [PMID: 36978832 PMCID: PMC10045600 DOI: 10.3390/antiox12030584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Advanced glycation end products (AGEs) are aging products. In chronic kidney disease (CKD), AGEs accumulate due to the increased production, reduced excretion, and the imbalance between oxidant/antioxidant capacities. CKD is therefore a model of aging. The aim of this review is to summarize the present knowledge of AGEs in CKD onset and progression, also focusing on CKD-related disorders (cardiovascular diseases, sarcopenia, and nutritional imbalance) and CKD mortality. The role of AGEs as etiopathogenetic molecules, as well as potential markers of disease progression and/or therapeutic targets, will be discussed.
Collapse
Affiliation(s)
- Elena Dozio
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Lara Caldiroli
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-025-5034-552; Fax: +39-025-5034-550
| | - Paolo Molinari
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Nicholas Walter Delfrate
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
| | - Massimiliano Marco Corsi Romanelli
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milan, Italy
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Simone Vettoretti
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
| |
Collapse
|
11
|
Association of Autofluorescent Advanced Glycation End Products (AGEs) with Frailty Components in Chronic Kidney Disease (CKD): Data from a Single-Center Cohort Study. Cells 2023; 12:cells12030438. [PMID: 36766780 PMCID: PMC9913604 DOI: 10.3390/cells12030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is characterized by an overproduction and accumulation of advanced glycation end products (AGEs). Because AGEs may play a role in the development of malnutrition and sarcopenia, two essential components of frailty, we evaluated whether they may also contribute to the onset of frailty in CKD patients. METHODS We performed a cross-sectional analysis of 117 patients. AGEs were quantified using a fluorescence spectrophotometer and soluble receptor for AGE (sRAGE) isoforms by ELISA. We defined frailty according to the frailty phenotype (FP) proposed by Fried. RESULTS The average age of patients was 80 ± 11 years, 70% were male, and the mean eGFR was 25 + 11 mL/min/1.73m2. Frailty was diagnosed in 51 patients, and 40 patients were classified as pre-frail. AGEs and RAGE isoforms seem not to correlate with overall frailty. Instead, AGEs were associated with specific frailty domains, inversely associated with BMI (R = -0.22, p = 0.016) and directly associated with gait test time (R = 0.17, p = 0.049). AGEs were also associated with involuntary weight loss (OR 1.84 p = 0.027), independent of age and sex. CONCLUSIONS AGEs are associated with some pivotal components of the frailty phenotype, although they are not associated with frailty overall.
Collapse
|
12
|
Rao NL, Kotian GB, Shetty JK, Shelley BP, Dmello MK, Lobo EC, Shankar SP, Almeida SD, Shah SR. Receptor for Advanced Glycation End Product, Organ Crosstalk, and Pathomechanism Targets for Comprehensive Molecular Therapeutics in Diabetic Ischemic Stroke. Biomolecules 2022; 12:1712. [PMID: 36421725 PMCID: PMC9687999 DOI: 10.3390/biom12111712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 08/10/2023] Open
Abstract
Diabetes mellitus, a well-established risk factor for stroke, is related to higher mortality and poorer outcomes following the stroke event. Advanced glycation end products(AGEs), their receptors RAGEs, other ligands, and several other processes contribute to the cerebrovascular pathomechanism interaction in the diabetes-ischemic stroke combination. Critical reappraisal of molecular targets and therapeutic agents to mitigate them is required to identify key elements for therapeutic interventions that may improve patient outcomes. This scoping review maps evidence on the key roles of AGEs, RAGEs, other ligands such as Leukotriene B4 (LTB4), High-mobility group box 1 (HMGB1) nuclear protein, brain-kidney-muscle crosstalk, alternate pathomechanisms in neurodegeneration, and cognitive decline related to diabetic ischemic stroke. RAGE, HMGB1, nitric oxide, and polyamine mechanisms are important therapeutic targets, inflicting common consequences of neuroinflammation and oxidative stress. Experimental findings on a number of existing-emerging therapeutic agents and natural compounds against key targets are promising. The lack of large clinical trials with adequate follow-up periods is a gap that requires addressing to validate the emerging therapeutic agents. Five therapeutic components, which include agents to mitigate the AGE-RAGE axis, improved biomarkers for risk stratification, better renal dysfunction management, adjunctive anti-inflammatory-antioxidant therapies, and innovative neuromuscular stimulation for rehabilitation, are identified. A comprehensive therapeutic strategy that features all the identified components is needed for outcome improvement in diabetic stroke patients.
Collapse
Affiliation(s)
- Nivedita L Rao
- Department of Biochemistry, Yenepoya Medical College, Yenepoya (deemed to be University), Mangalore 575018, Karnataka, India
| | - Greeshma B Kotian
- Department of Biochemistry, Yenepoya Medical College, Yenepoya (deemed to be University), Mangalore 575018, Karnataka, India
| | - Jeevan K Shetty
- Department of Biochemistry, School of Medicine, Royal College of Surgeons in Ireland Medical University of Bahrain, Muharraq 228, Bahrain
| | - Bhaskara P Shelley
- Department of Neurology, Yenepoya Medical College, Yenepoya (deemed to be University), Mangalore 575018, Karnataka, India
| | - Mackwin Kenwood Dmello
- Department of Public Health, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Eric C Lobo
- Department of Biochemistry, Yenepoya Medical College, Yenepoya (deemed to be University), Mangalore 575018, Karnataka, India
| | - Suchetha Padar Shankar
- College of Physiotherapy, Dayananda Sagar University, Bangalore 560111, Karnataka, India
| | - Shellette D Almeida
- School of Physiotherapy, D. Y. Patil (Deemed to be University), Navi Mumbai 400706, Maharashtra, India
| | - Saiqa R Shah
- Department of Biochemistry, Yenepoya Medical College, Yenepoya (deemed to be University), Mangalore 575018, Karnataka, India
| |
Collapse
|
13
|
Majchrzak C, Cougnard-Gregoire A, Le-Goff M, Féart C, Delcourt C, Reydit M, Helmer C, Rigalleau V. Skin autofluorescence of Advanced Glycation End-products and mortality in older adults: The roles of chronic kidney disease and diabetes. Nutr Metab Cardiovasc Dis 2022; 32:2526-2533. [PMID: 36064683 DOI: 10.1016/j.numecd.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/27/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIM Advanced glycation end products are involved in age-related multisystem decline. They accumulate in body tissues with age, diabetes and chronic kidney disease (CKD), and can be measured non-invasively by the skin autofluorescence (SAF). We studied the relation between SAF and later mortality in old adults. METHODS AND RESULTS The SAF was measured using an AGE-Reader in 451 individuals from the general population aged over 75 years, and all-cause mortality was assessed during an average follow-up of 6.4 years. The association between SAF and mortality was analyzed using a multivariate Cox survival model, adjusted for age and gender. Analyses were further adjusted for diabetes and stratified on the presence of CKD due to its interaction with SAF for the risk of mortality. Participants were 82 years old on average (SD 4.1). Their mean SAF was 2.8 AU (SD 0.6). One hundred and forty-four individuals (31.9%) died during the follow-up. Adjusted for age and gender, SAF was associated with an increased risk of all-cause mortality (HR 1.44, 95%CI: 1.14-1.82 for a one-AU increase of SAF). The association was no longer significant after adjustment for diabetes. However, after stratification for the presence of CKD, higher SAF was associated with an increased risk of all-cause mortality in the participants with CKD at baseline (HR 1.68, 95%CI: 1.11-2.55), whereas there was no association among participants without CKD (HR 0.95, 95%CI: 0.63-1.44). CONCLUSION Skin autofluorescence is associated with increased all-cause mortality in older adults already suffering from CKD.
Collapse
Affiliation(s)
- Camille Majchrzak
- Nutrition-Diabetology, CHU of Bordeaux, Haut-Lévêque Hospital, F-33600 Pessac, France
| | - Audrey Cougnard-Gregoire
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, F-33000 Bordeaux, France
| | - Mélanie Le-Goff
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, F-33000 Bordeaux, France
| | - Catherine Féart
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, F-33000 Bordeaux, France
| | - Cécile Delcourt
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, F-33000 Bordeaux, France
| | - Mathilde Reydit
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, F-33000 Bordeaux, France
| | - Catherine Helmer
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, F-33000 Bordeaux, France
| | - Vincent Rigalleau
- Nutrition-Diabetology, CHU of Bordeaux, Haut-Lévêque Hospital, F-33600 Pessac, France; University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, F-33000 Bordeaux, France.
| |
Collapse
|
14
|
Association between Urinary Advanced Glycation End Products and Subclinical Inflammation in Children and Adolescents: Results from the Italian I.Family Cohort. Nutrients 2022; 14:nu14194135. [PMID: 36235787 PMCID: PMC9571918 DOI: 10.3390/nu14194135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Advanced Glycation End Products (AGEs) have been positively correlated with inflammation in adults, while inconsistent evidence is available in children. We evaluated the association between urinary AGEs, measured by fluorescence spectroscopy, and biomarkers of subclinical inflammation in 676 healthy children/adolescents (age 11.8 ± 1.6 years, M ± SD) from the Italian cohort of the I.Family project. Urinary fluorescent AGEs were used as independent variable and high-sensitivity C-reactive protein (hs-CRP) was the primary outcome, while other biomarkers of inflammation were investigated as secondary outcomes. Participants with urinary AGEs above the median of the study population showed statistically significantly higher hs-CRP levels as compared to those below the median (hs-CRP 0.44 ± 1.1 vs. 0.24 ± 0.6 mg/dL, M ± SD p = 0.002). We found significant positive correlations between urinary AGEs and hs-CRP (p = 0.0001), IL-15 (p = 0.001), IP-10 (p = 0.006), and IL-1Ra (p = 0.001). At multiple regression analysis, urinary AGEs, age, and BMI Z-score were independent variables predicting hs-CRP levels. We demonstrated for the first time, in a large cohort of children and adolescents, that the measurement of fluorescent urinary AGEs may represent a simple, noninvasive, and rapid technique to evaluate the association between AGEs and biomarkers of inflammation. Our data support a role of AGEs as biomarkers of subclinical inflammation in otherwise healthy children and adolescents.
Collapse
|
15
|
Caldiroli L, Molinari P, Dozio E, Rigolini R, Giubbilini P, Romanelli MMC, Castellano G, Vettoretti S. In Patients with Chronic Kidney Disease Advanced Glycation End-Products Receptors Isoforms (sRAGE and esRAGE) Are Associated with Malnutrition. Antioxidants (Basel) 2022; 11:antiox11071253. [PMID: 35883745 PMCID: PMC9312066 DOI: 10.3390/antiox11071253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Background: in patients with chronic kidney disease (CKD), the inflammatory and pro-oxidant milieu may contribute to malnutrition development. In this study, we investigated the relationship between inflammation, advanced glycation end-products (AGEs), and their receptors (RAGEs) with malnutrition in CKD patients. Methods: we evaluated 117 patients. AGEs were quantified by fluorescence intensity using a fluorescence spectrophotometer, soluble RAGEs isoforms, and inflammatory interleukins by ELISA. Malnutrition was assessed by a malnutrition inflammation score. Results: mean age was 80 ± +11 years, eGFR was 25 ± +11 mL/min/1.73 m2 and BMI was 28 ± 5 Kg/m2. Malnourished individuals were older, had lower estimated protein intake (nPCR 0.65 ± 0.2 vs. 0.8 ± 0.2 vs. 0.8 ± 0.3, p = 0.01), higher C reactive protein (CRP 0.6 ± 1 vs. 0.6 ± 0.7 vs. 0.17 ± 0.13, p = 0.02) and tumor necrosis factor α (TNF α 14.7 ± 8.7 vs. 15.6 ± 8 vs. 11.8 ± 5.8, p = 0.029). Malnourished patients had higher sRAGE (2813 ± 1477 vs. 2158 ± 1236 vs. 2314 ± 1115, p = 0.035) and esRAGE (648 [408–1049] vs. 476 [355–680] vs. 545 [380–730] p = 0.033). In the multivariate analysis, only sRAGE maintained its association with malnutrition (p = 0.02) independently of aging and inflammation. Conclusions: in CKD patients, RAGEs isoforms, but not AGEs, are associated with malnutrition, irrespective of systemic inflammation, aging, and renal function.
Collapse
Affiliation(s)
- Lara Caldiroli
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (L.C.); (P.M.); (G.C.)
| | - Paolo Molinari
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (L.C.); (P.M.); (G.C.)
| | - Elena Dozio
- Laboratory of Clinical Pathology, Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.D.); (M.M.C.R.)
| | - Roberta Rigolini
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (R.R.); (P.G.)
| | - Paola Giubbilini
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (R.R.); (P.G.)
| | - Massimiliano M. Corsi Romanelli
- Laboratory of Clinical Pathology, Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.D.); (M.M.C.R.)
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (R.R.); (P.G.)
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (L.C.); (P.M.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Simone Vettoretti
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (L.C.); (P.M.); (G.C.)
- Correspondence: ; Tel.: +39-02-55-03-45-52; Fax: +39-02-55-03-45-50
| |
Collapse
|
16
|
Molinari P, Caldiroli L, Dozio E, Rigolini R, Giubbilini P, Corsi Romanelli MM, Castellano G, Vettoretti S. Association between Advanced Glycation End-Products and Sarcopenia in Patients with Chronic Kidney Disease. Biomedicines 2022; 10:biomedicines10071489. [PMID: 35884793 PMCID: PMC9313160 DOI: 10.3390/biomedicines10071489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: In patients with chronic kidney disease (CKD), there is an overproduction and accumulation of advanced glycation end-products (AGEs). Since AGEs may have detrimental effects on muscular trophism and performance, we evaluated whether they may contribute to the onset of sarcopenia in CKD patients. Methods: We enrolled 117 patients. The AGEs were quantified by fluorescence intensity using a fluorescence spectrophotometer and soluble receptor for AGE (sRAGE) isoforms by ELISA. As for the sarcopenia definition, we used the European Working Group on Sarcopenia in Older People (EWGSOP2) criteria. Results: The average age was 80 ± 11 years, 70% were males, and the mean eGFR was 25 + 11 mL/min/1.73 m2. Sarcopenia was diagnosed in 26 patients (with a prevalence of 22%). The sarcopenic patients had higher levels of circulating AGEs (3405 ± 951 vs. 2912 ± 722 A.U., p = 0.005). AGEs were higher in subjects with a lower midarm muscle circumference (MAMC) (3322 ± 919 vs. 2883 ± 700 A.U., respectively; p = 0.005) and were directly correlated with the gait test time (r = 0.180, p = 0.049). The total sRAGE and its different isoforms (esRAGE and cRAGE) did not differ in patients with or without sarcopenia. Conclusions: In older CKD patients, AGEs, but not sRAGE, are associated with the presence of sarcopenia. Therefore, AGEs may contribute to the complex pathophysiology leading to the development of sarcopenia in CKD patients.
Collapse
Affiliation(s)
- Paolo Molinari
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (P.M.); (L.C.); (G.C.)
| | - Lara Caldiroli
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (P.M.); (L.C.); (G.C.)
| | - Elena Dozio
- Department of Biomedical Science for Health, Laboratory of Clinical Pathology, Università degli Studi di Milano, 20133 Milan, Italy; (E.D.); (M.M.C.R.)
| | - Roberta Rigolini
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (R.R.); (P.G.)
| | - Paola Giubbilini
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (R.R.); (P.G.)
| | - Massimiliano M. Corsi Romanelli
- Department of Biomedical Science for Health, Laboratory of Clinical Pathology, Università degli Studi di Milano, 20133 Milan, Italy; (E.D.); (M.M.C.R.)
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (R.R.); (P.G.)
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (P.M.); (L.C.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Simone Vettoretti
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (P.M.); (L.C.); (G.C.)
- Correspondence: ; Tel.: +02-55-03-45-52; Fax: +02-55-03-45-50
| |
Collapse
|
17
|
Kuzan A, Królewicz E, Kustrzeba-Wójcicka I, Lindner-Pawłowicz K, Sobieszczańska M. How Diabetes and Other Comorbidities of Elderly Patients and Their Treatment Influence Levels of Glycation Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127524. [PMID: 35742776 PMCID: PMC9223786 DOI: 10.3390/ijerph19127524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022]
Abstract
Medical care for geriatric patients is a great challenge, mainly due to various overlapping deficits relevant to numerous coexisting diseases, of which the most common are diabetes mellitus and atherosclerosis. In the case of diabetes, the glycation process is intensified, which accelerates atherosclerosis development and diabetic complications. Our goal was to investigate the relationship between the classical biochemical parameters of diabetes and atherosclerosis, as well as parameters which may indicate a nephropathy, and the parameters strictly related to glycation, taking into account the pharmacological treatment of patients. Methods: We analyzed the patients’ serum concentrations of fluorescent glycation product—pentosidine, concentrations of soluble receptors for advanced glycation products (sRAGE), lipoprotein receptor-1 (LOX-1), galectin 3 (GAL3), scavenger receptor class A (SR-A), and scavenger receptor class B (SR-BI), as well as the level of lipid peroxidation and free amine content. Among the identified correlations, the most interesting are the following: sRAGE with triglycerides (r = 0.47, p = 0.009), sRAGE with SR-BI (r = 0.47, p = 0.013), SR-BI with LOX-1 (r = 0.31, p = 0.013), and SR-BI with HDL (r = −0.30, p = 0.02). It has been shown that pentosidine and reactive free amine contents are significantly higher in elderly patients with ischemic heart disease. Pentosidine is also significantly higher in patients with arterial hypertension. Malondialdehyde turned out to be higher in patients with diabetes mellitus type 2 that was not treated with insulin or metformin than in those treated with both medications (p = 0.052). GAL3 was found to be lower both in persons without diabetes and in diabetics treated with metformin (p = 0.005). LOX-1 was higher in diabetic patients not treated with metformin or insulin, and lowest in diabetics treated with both insulin and metformin, with the effect of metformin reducing LOX-1 levels (p = 0.039). Our results were the basis for a discussion about the diagnostic value in the clinical practice of LOX-1 and GAL3 in geriatric patients with diabetes and also provide grounds for inferring the therapeutic benefits of insulin and metformin treatment.
Collapse
Affiliation(s)
- Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (E.K.); (I.K.-W.)
- Correspondence: ; Tel.: +48-71-7841-379
| | - Emilia Królewicz
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (E.K.); (I.K.-W.)
| | - Irena Kustrzeba-Wójcicka
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (E.K.); (I.K.-W.)
| | - Karolina Lindner-Pawłowicz
- Clinical Department of Geriatrics, Wroclaw Medical University, 50-369 Wroclaw, Poland; (K.L.-P.); (M.S.)
| | - Małgorzata Sobieszczańska
- Clinical Department of Geriatrics, Wroclaw Medical University, 50-369 Wroclaw, Poland; (K.L.-P.); (M.S.)
| |
Collapse
|
18
|
Dietary Advanced Glycation End Products in an Elderly Population with Diabetic Nephropathy: An Exploratory Investigation. Nutrients 2022; 14:nu14091818. [PMID: 35565786 PMCID: PMC9102870 DOI: 10.3390/nu14091818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end products (AGEs) are important in pathophysiology of type 2 diabetes mellitus (T2DM) and diabetic kidney disease (DKD). Dietary AGEs (dAGEs) contribute to the overall AGE pool in the body. Forty elderly T2DM patients with DKD were randomly allocated to a low-AGE (n = 20) or regular diabetic (n = 20) diet group. A three-day meal questionnaire was used to estimate average quantity of dAGEs. AGE accumulation was measured using skin autofluorescence and urine spectroscopy. sRAGE (soluble receptor AGE) was quantified using ELISA. After 8 weeks, the mean consumption of dAGEs was considerably reduced, both in the low-AGE diet (p = 0.004) and the control (p = 0.019) group. The expected urinary emission peak at 490 nm was shifted to 520 nm in some spectra. dAGEs did not correspond with urine AGE output. An AGE-limited diet for two months did not affect AGE content in skin and urine, or sRAGE concentration in the blood. The role of glycemia is likely to be greater than the impact of dAGE consumption. The unique observation of a fluorescence pattern at 520 nm warrants further examination, since it might point to genetic differences in AGE regulation, which could have clinical consequences, as AGE content depends on its formation and elimination.
Collapse
|
19
|
Steenbeke M, Speeckaert R, Desmedt S, Glorieux G, Delanghe JR, Speeckaert MM. The Role of Advanced Glycation End Products and Its Soluble Receptor in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23073439. [PMID: 35408796 PMCID: PMC8998875 DOI: 10.3390/ijms23073439] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with chronic kidney disease (CKD) are more prone to oxidative stress and chronic inflammation, which may lead to an increase in the synthesis of advanced glycation end products (AGEs). Because AGEs are mostly removed by healthy kidneys, AGE accumulation is a result of both increased production and decreased kidney clearance. On the other hand, AGEs may potentially hasten decreasing kidney function in CKD patients, and are independently related to all-cause mortality. They are one of the non-traditional risk factors that play a significant role in the underlying processes that lead to excessive cardiovascular disease in CKD patients. When AGEs interact with their cell-bound receptor (RAGE), cell dysfunction is initiated by activating nuclear factor kappa-B (NF-κB), increasing the production and release of inflammatory cytokines. Alterations in the AGE-RAGE system have been related to the development of several chronic kidney diseases. Soluble RAGE (sRAGE) is a decoy receptor that suppresses membrane-bound RAGE activation and AGE-RAGE-related toxicity. sRAGE, and more specifically, the AGE/sRAGE ratio, may be promising tools for predicting the prognosis of kidney diseases. In the present review, we discuss the potential role of AGEs and sRAGE as biomarkers in different kidney pathologies.
Collapse
Affiliation(s)
- Mieke Steenbeke
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
| | - Reinhart Speeckaert
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium;
- Research Foundation Flanders, 1000 Brussels, Belgium
| | - Stéphanie Desmedt
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
| | - Griet Glorieux
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
| | - Joris R. Delanghe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Marijn M. Speeckaert
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
- Research Foundation Flanders, 1000 Brussels, Belgium
- Correspondence:
| |
Collapse
|
20
|
Pan J, Bao X, Gonçalves I, Jujić A, Engström G. Skin autofluorescence, a measure of tissue accumulation of advanced glycation end products, is associated with subclinical atherosclerosis in coronary and carotid arteries. Atherosclerosis 2022; 345:26-32. [DOI: 10.1016/j.atherosclerosis.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/02/2022]
|
21
|
Molinari P, Caldiroli L, Dozio E, Rigolini R, Giubbilini P, Romanelli MMC, Messa P, Vettoretti S. AGEs and sRAGE Variations at Different Timepoints in Patients with Chronic Kidney Disease. Antioxidants (Basel) 2021; 10:antiox10121994. [PMID: 34943097 PMCID: PMC8698924 DOI: 10.3390/antiox10121994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/22/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are affected by enhanced oxidative stress and chronic inflammation, and these factors may contribute to increase advanced glycation end-products (AGEs). In this study we quantified AGEs and soluble receptors for AGE (sRAGE) isoforms and evaluated the association between their variations and eGFR at baseline and after 12 months. We evaluated 64 patients. AGEs were quantified by fluorescence intensity using a fluorescence spectrophotometer, and sRAGE by ELISA. Median age was 81 years, male patients accounted for 70%, 63% were diabetic, and eGFR was 27 ± 10 mL/min/1.73 m2. At follow up, sRAGE isoforms underwent a significant decrement (1679 [1393;2038] vs. 1442 [1117;2102], p < 0.0001), while AGEs/sRAGE ratios were increased (1.77 ± 0.92 vs. 2.24 ± 1.34, p = 0.004). Although AGEs and AGEs/sRAGE ratios were inversely related with eGFR, their basal values as well their variations did not show a significant association with eGFR changes. In a cohort of patients with a stable clinical condition at 1 year follow-up, AGEs/sRAGE was associated with renal function. The lack of association with eGFR suggests that other factors can influence its increase. In conclusion, AGEs/sRAGE can be an additional risk factor for CKD progression over a longer time, but its role as a prognostic tool needs further investigation.
Collapse
Affiliation(s)
- Paolo Molinari
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (P.M.); (L.C.); (P.M.)
| | - Lara Caldiroli
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (P.M.); (L.C.); (P.M.)
| | - Elena Dozio
- Laboratory of Clinical Pathology, Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.D.); (M.M.C.R.)
| | - Roberta Rigolini
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (R.R.); (P.G.)
| | - Paola Giubbilini
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (R.R.); (P.G.)
| | - Massimiliano M. Corsi Romanelli
- Laboratory of Clinical Pathology, Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.D.); (M.M.C.R.)
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (R.R.); (P.G.)
| | - Piergiorgio Messa
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (P.M.); (L.C.); (P.M.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Simone Vettoretti
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy; (P.M.); (L.C.); (P.M.)
- Correspondence: ; Tel.: +39-02-55-03-45-52
| |
Collapse
|
22
|
Larina II, Severina AS, Maganeva IS, Ainetdinova AR, Eremkina AK, Gavrilova AO, Shamhalova MS, Dmitriev IV, Pinchuk AV, Shestakova MV. Advanced glycation end products and oxidative stress as a basis for metabolic abnormalities in patients with type 1 diabetes after successful simultaneous pancreas-kidney transplantation. TERAPEVT ARKH 2021; 93:1155-1163. [DOI: 10.26442/00403660.2021.10.201100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 11/22/2022]
Abstract
Aim. To compare advanced glycation end-products (AGE, RAGE) and 3-nitrotyrosine (3-HT) in patients with DM 1 after successful simultaneous pancreas-kidney transplantation (SPK) and kidney transplantation alone (KTA). To assess relationship between levels of AGE, RAGE, 3-HT and renal transplant (RT) function, carbohydrate and mineral metabolism.
Materials and methods. The study included 58 patients who received kidney transplantation in end-stage renal disease (ESRD). 36 patients received SPK. There were performed routine laboratory, examination of AGE, RAGE, 3-NT, parathyroid hormone (PTH), 25(OH)vitamin D, calcium, phosphorus, FGF23, osteoprotegerin (OPG), and fetuin-A levels.
Results. All patients after SPK reached normoglycemia (HbA1c 5.7 [5.3; 6.1] %; C-peptide 3.24 [2.29; 4.40] ng/ml) with the achievement of significant difference vs patients after KTA. Arterial hypertension (AH) was more frequent in recipients of SPK before transplantation than after (p=0.008). AH also persisted in greater number of cases in patients after KTA than after SPK. Patients after SPK had higher AGE (р=0.0003) and lower RAGE (р=0.000003) levels. OPG in patients after SPK was significantly higher (р=0.04). The correlation analysis revealed significant positive correlation between 3-HT and OPG (p0.05; r=0.30), RAGE and eGFR (r=-0.52), HbA1c (r=0.48), duration of AH (r=0.34), AGE with HbA1c (r=0.51).
Conclusion. The results of the "metabolic memory" markers analysis may indicate their contribution to the persistence of the metabolic consequences of CKD and DM 1 after achievement of normoglycemia and renal function restoration and their possible participation in development of recurrent nephropathy, vascular calcification, and bone disorders.
Collapse
|
23
|
Herrera-Gómez F, Álvarez FJ. Healthcare Data for Achieving a More Personalized Treatment of Chronic Kidney Disease. Biomedicines 2021; 9:488. [PMID: 33946653 PMCID: PMC8145653 DOI: 10.3390/biomedicines9050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
The current concept of healthcare incites a more personalized treatment of diseases. To this aim, biomarkers are needed to improve decision-making facing chronic kidney disease (CKD) patients. Prognostic markers provided by real-world (observational) evidence are proposed in this Special Issue entitled "Biomarkers in Chronic Kidney Disease", with the intention to identify high-risk patients. These markers do not target measurable parameters in patients but clinical endpoints that may be in turn transformed to benefits under the effect of future interventions.
Collapse
Affiliation(s)
- Francisco Herrera-Gómez
- Kidney Resuscitation and Acute Purification Therapies, Complejo Asistencial de Zamora, Sanidad de Castilla y León, 49022 Zamora, Spain
- Transplantation Center, Lausanne University Hospital & University of Lausanne, CH-1011 Lausanne, Switzerland
- Pharmacological Big Data Laboratory, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain;
| | - F. Javier Álvarez
- Pharmacological Big Data Laboratory, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain;
| |
Collapse
|
24
|
Liu K, Zhao X, Qi X, Hou DL, Li HB, Gu YH, Xu QL. Design, synthesis, and biological evaluation of a novel dual peroxisome proliferator-activated receptor alpha/delta agonist for the treatment of diabetic kidney disease through anti-inflammatory mechanisms. Eur J Med Chem 2021; 218:113388. [PMID: 33784603 DOI: 10.1016/j.ejmech.2021.113388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 01/15/2023]
Abstract
Diabetic kidney disease (DKD) is a major feature of the final stage of nearly all cause types of diabetes mellitus (DM). To date, few safe and effective drugs are available to treat. Peroxisome proliferator-activated receptors (PPARs), comprised of three members: PPAR-α, PPAR-δ and PPAR-γ, play a protective role in the DKD through glycemic control and lipid metabolism, whereas systemic activation of PPAR-γ causes serious side-effects in clinical trials. GFT505 is a dual PPAR-α/δ agonist, and the selectivity against PPAR-γ is still to be improved. Sulfuretin has been shown to suppress the expression of PPAR-γ and improve the pathogenesis of diabetic complications. In this study, by hybridizing the carboxylic acid of GFT505 and the parent nucleus of sulfuretin, we pioneeringly designed and synthetized a series of novel dual PPAR-α/δ agonists, expecting to provide a better benefit/risk ratio for PPARs. Of all the synthesized compounds, compound 12 was identified with highly activity on PPAR-α/δ and higher selectivity against PPAR-γ than that of GFT505 (EC50: hPPAR-α: 0.26 μM vs.0.76 μM; hPPAR-δ: 0.50 μM vs.0.73 μM; hPPAR-γ: 4.22 μM vs.2.79 μM). The molecular docking studies also depicted good binding affinity of compound 12 for PPAR-α and PPAR-δ compared to GFT505. Furthermore, compound 12 exhibited an evidently renoprotective effect on the DKD through inhibiting inflammatory process, which might at least partly via JNK/NF-κB pathways in vivo and in vitro. Overall, compound 12 hold therapeutic promise for DKD.
Collapse
Affiliation(s)
- Kai Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Xing Zhao
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Xue Qi
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Dong-Liang Hou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Hao-Bin Li
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Yu-Hao Gu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China
| | - Qing-Long Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, China.
| |
Collapse
|
25
|
Squires PE, Price GW, Mouritzen U, Potter JA, Williams BM, Hills CE. Danegaptide Prevents TGFβ1-Induced Damage in Human Proximal Tubule Epithelial Cells of the Kidney. Int J Mol Sci 2021; 22:2809. [PMID: 33802083 PMCID: PMC7999212 DOI: 10.3390/ijms22062809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a global health problem associated with a number of comorbidities. Recent evidence implicates increased hemichannel-mediated release of adenosine triphosphate (ATP) in the progression of tubulointerstitial fibrosis, the main underlying pathology of CKD. Here, we evaluate the effect of danegaptide on blocking hemichannel-mediated changes in the expression and function of proteins associated with disease progression in tubular epithelial kidney cells. Primary human proximal tubule epithelial cells (hPTECs) were treated with the beta1 isoform of the pro-fibrotic cytokine transforming growth factor (TGFβ1) ± danegaptide. qRT-PCR and immunoblotting confirmed mRNA and protein expression, whilst a cytokine antibody array assessed the expression/secretion of proinflammatory and profibrotic cytokines. Carboxyfluorescein dye uptake and ATP biosensing measured hemichannel activity and ATP release, whilst transepithelial electrical resistance was used to assess paracellular permeability. Danegaptide negated carboxyfluorescein dye uptake and ATP release and protected against protein changes associated with tubular injury. Blocking Cx43-mediated ATP release was paralleled by partial restoration of the expression of cell cycle inhibitors, adherens and tight junction proteins and decreased paracellular permeability. Furthermore, danegaptide inhibited TGFβ1-induced changes in the expression and secretion of key adipokines, cytokines, chemokines, growth factors and interleukins. The data suggest that as a gap junction modulator and hemichannel blocker, danegaptide has potential in the future treatment of CKD.
Collapse
Affiliation(s)
- Paul E. Squires
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Gareth W. Price
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Ulrik Mouritzen
- Ciana Therapeutics, Ved Hegnet 2, 2960 Rungsted Kyst, Copenhagen, Denmark;
| | - Joe A. Potter
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Bethany M. Williams
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Claire E. Hills
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| |
Collapse
|