1
|
Hay A, Aucher W, Pigeault R, Bertaux J, Crépin A, Remaury QB, Héchard Y, Samba-Louaka A, Villéger R. Legionella pneumophila subverts the antioxidant defenses of its amoeba host Acanthamoeba castellanii. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100338. [PMID: 39877885 PMCID: PMC11772960 DOI: 10.1016/j.crmicr.2024.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, interacts in the environment with free-living amoebae that serve as replicative niches for the bacteria. Among these amoebae, Acanthamoeba castellanii is a natural host in water networks and a model commonly used to study the interaction between L. pneumophila and its host. However, certain crucial aspects of this interaction remain unclear. One such aspect is the role of oxidative stress, with studies focusing on reactive oxygen species (ROS) production by the host and putting less emphasis on the involvement of the host's antioxidant defenses during the infectious process. In this study, we propose to examine the consequences of infection with L. pneumophila wild-type or with an isogenic ΔdotA mutant strain, which is unable to replicate intracellularly, on A. castellanii. For this purpose, we looked at the host ROS levels, host antioxidant defense transcripts, and metabolites linked to the amoeba's antioxidant defenses. It is known that L. pneumophila WT can block the activation of NADPH oxidase as soon as it enters the macrophage and suppress ROS production compared to ΔdotA mutant strain. In addition, it has been shown in macrophages that L. pneumophila WT decreases ROS at 24 h p.i.; here we confirm this result in amoebae and suggest that this decrease could be partly explained by L. pneumophila differentially regulated host antioxidant defense transcripts at 6 h p.i.. We also explored the metabolome of A. castellanii infected or not with L. pneumophila. Among the 617 metabolites identified, four with reduced abundances during infection may be involved in antioxidant responses. This study suggests that L. pneumophila could hijack the host's antioxidant defenses during its replication to maintain a reduced level of ROS.
Collapse
Affiliation(s)
- Alban Hay
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France
| | - Willy Aucher
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France
| | - Romain Pigeault
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France
| | - Joanne Bertaux
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France
| | - Alexandre Crépin
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France
| | - Quentin Blancart Remaury
- Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers, France
| | - Yann Héchard
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France
| | - Ascel Samba-Louaka
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France
| | - Romain Villéger
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France
| |
Collapse
|
2
|
Attiq A, Afzal S, Ahmad W, Kandeel M. Hegemony of inflammation in atherosclerosis and coronary artery disease. Eur J Pharmacol 2024; 966:176338. [PMID: 38242225 DOI: 10.1016/j.ejphar.2024.176338] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Inflammation drives coronary artery disease and atherosclerosis implications. Lipoprotein entry, retention, and oxidative modification cause endothelial damage, triggering innate and adaptive immune responses. Recruited immune cells orchestrate the early atherosclerotic lesions by releasing proinflammatory cytokines, expediting the foam cell formation, intraplaque haemorrhage, secretion of matrix-degrading enzymes, and lesion progression, eventually promoting coronary artery syndrome via various inflammatory cascades. In addition, soluble mediators disrupt the dynamic anti- and prothrombotic balance maintained by endothelial cells and pave the way for coronary artery disease such as angina pectoris. Recent studies have established a relationship between elevated levels of inflammatory markers, including C-reactive protein (CRP), interleukins (IL-6, IL-1β), and tumour necrosis factor-alpha (TNF-α) with the severity of CAD and the possibility of future cardiovascular events. High-sensitivity C-reactive protein (hs-CRP) is a marker for assessing systemic inflammation and predicting the risk of developing CAD based on its peak plasma levels. Hence, understanding cross-talk interactions of inflammation, atherogenesis, and CAD is highly warranted to recalculate the risk factors that activate and propagate arterial lesions and devise therapeutic strategies accordingly. Cholesterol-inflammation lowering agents (statins), monoclonal antibodies targeting IL-1 and IL-6 (canakinumab and tocilizumab), disease-modifying antirheumatic drugs (methotrexate), sodium-glucose transport protein-2 (SGLT2) inhibitors, colchicine and xanthene oxidase inhibitor (allopurinol) have shown promising results in reducing inflammation, regressing atherogenic plaque and modifying the course of CAD. Here, we review the complex interplay between inflammatory, endothelial, smooth muscle and foam cells. Moreover, the putative role of inflammation in atherosclerotic CAD, underlying mechanisms and potential therapeutic implications are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| | - Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982, Al Ahsa, Saudi Arabia.
| | - Waqas Ahmad
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982, Al Ahsa, Saudi Arabia
| |
Collapse
|
3
|
Wu X, Chen X, Ye A, Cao J, He R, Pan M, Jin F, Ma H, Zhou W. Multi-tissue metabolomic profiling reveals potential mechanisms of cocoon yield in silkworms (Bombyx mori) fed formula feed versus mulberry leaves. Front Mol Biosci 2022; 9:977047. [PMID: 36060262 PMCID: PMC9428324 DOI: 10.3389/fmolb.2022.977047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Use of formula feed (FF) for silkworms for all instars, has promoted transformation and progress in traditional sericulture. However, the cocoon yield of FF silkworms has failed to reach that of silkworms fed mulberry leaves (ML). The biological mechanisms underlying this phenomenon have not been well described. This study aimed to identify metabolic mechanisms and potential biomarkers relating to the poor cocoon yield of FF silkworms. In this study, silkworms received treatments of either ML (ML group) or FF (FF group) for all instars. At the 3rd day of the 5th instar, the midgut (MG), hemolymph (HL) and posterior silk gland (PSG) were collected for the metabolome profiles detection. The remaining silkworms were fed ML or FF until cocooning for investigation. The whole cocoon yield (WCY) was significantly higher in the FF group than the ML group (p < 0.05), whereas the cocoon shell weight (CSW) and cocoon shell rate (CSR) were significantly lower in the FF group (p < 0.05). A total of 845, 867 and 831 metabolites were qualified and quantified in the MG, HL and PSG of the FF silkworms, respectively. Correspondingly, 789, 833 and 730 metabolites were quantified in above three tissues of the ML group. Further, 230, 249 and 304 significantly different metabolites (SDMs) were identified in the MG, HL and PSG between the FF and ML group, respectively. Eleven metabolic pathways enriched by the SDMs were mutual among the three tissues. Among them, cysteine and methionine metabolism, arginine biosynthesis, and arginine and proline metabolism were the top three pathways with the highest impact value in the PSG. Six biomarkers were obtained through biomarker analysis and Pearson correlation calculation. Among them, homocitrulline, glycitein, valyl-threonine, propyl gallate and 3-amino-2,3-dihydrobenzoic acid were positively correlated with WCY, but negatively correlated with CSW and CSR (p < 0.05). An opposite correlation pattern was observed between 3-dimethylallyl-4-hydroxyphenylpyruvate and the three cocoon performance traits. Overall, three key metabolic pathways and six biomarkers associated with cocoon yield were interpreted, and should provide directions for formula feed optimization in factory-raised silkworms.
Collapse
Affiliation(s)
- Xuehui Wu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xuedong Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Aihong Ye
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jinru Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Ruimin He
- Shengzhou Mulsun Biotech Co., Ltd., Shengzhou, Zhejiang, China
| | - Meiliang Pan
- Zhejiang Provincial Agricultural Technology Extension and Service Center, Hangzhou, Zhejiang, China
| | - Feng Jin
- Shengzhou Mulsun Biotech Co., Ltd., Shengzhou, Zhejiang, China
| | - Huanyan Ma
- Zhejiang Provincial Agricultural Technology Extension and Service Center, Hangzhou, Zhejiang, China
| | - Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- *Correspondence: Wenlin Zhou,
| |
Collapse
|
4
|
de Bruin-Hoegée M, van Damme IM, van Groningen T, van der Riet-van Oeveren D, Noort D, van Asten AC. Elucidation of in Vitro Chlorinated Tyrosine Adducts in Blood Plasma as Selective Biomarkers of Chlorine Exposure. Chem Res Toxicol 2022; 35:1070-1079. [PMID: 35622957 PMCID: PMC9214762 DOI: 10.1021/acs.chemrestox.2c00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chlorine is a widely available industrial chemical and involved in a substantial number of cases of poisoning. It has also been used as a chemical warfare agent in military conflicts. To enable forensic verification, the persistent biomarkers 3-chlorotyrosine and 3,5-dichlorotyrosine in biomedical samples could be detected. An important shortfall of these biomarkers, however, is the relatively high incidence of elevated levels of chlorinated tyrosine residues in individuals with inflammatory diseases who have not been exposed to chlorine. Therefore, more reliable biomarkers are necessary to distinguish between endogenous formation and exogeneous exposure. The present study aims to develop a novel diagnostic tool for identifying site-specific chlorinated peptides as a more unambiguous indicator of exogeneous chlorine exposure. Human blood plasma was exposed in vitro to various chlorine concentrations, and the plasma proteins were subsequently digested by pronase, trypsin, or pepsin. After sample preparation, the digests were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) and liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). In line with other studies, low levels of 3-chlorotyrosine and 3,5-dichlorotyrosine were found in blank plasma samples in this study. Therefore, 50 site-specific biomarkers were identified, which could be used as more unambiguous biomarkers for chlorine exposure. Chlorination of the peptides TY*ETTLEK, Y*KPGQTVK, Y*QQKPGQAPR, HY*EGSTVPEK, and Y*LY*EIAR could already be detected at moderate in vitro chlorine exposure levels. In addition, the latter two peptides were found to have dichlorinated fragments. Especially, Y*LY*EIAR, with a distinct chlorination pattern in the MS spectra, could potentially be used to differentiate exogeneous exposure from endogenous causes as other studies reported that this part of human serum albumin is nitrated rather than chlorinated under physiological conditions. In conclusion, trypsin digestion combined with high-resolution MS analysis of chlorinated peptides could constitute a valuable technique for the forensic verification of exposure to chlorine.
Collapse
Affiliation(s)
- Mirjam de Bruin-Hoegée
- van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, P.O. Box 94157, Amsterdam 1090GD, The Netherlands.,TNO Defence, Safety and Security, Dep. CBRN Protection, Lange Kleiweg 137, Rijswijk 2288GJ, The Netherlands
| | - Irene M van Damme
- van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, P.O. Box 94157, Amsterdam 1090GD, The Netherlands
| | - Tomas van Groningen
- TNO Defence, Safety and Security, Dep. CBRN Protection, Lange Kleiweg 137, Rijswijk 2288GJ, The Netherlands
| | | | - Daan Noort
- TNO Defence, Safety and Security, Dep. CBRN Protection, Lange Kleiweg 137, Rijswijk 2288GJ, The Netherlands
| | - Arian C van Asten
- van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, P.O. Box 94157, Amsterdam 1090GD, The Netherlands.,CLHC, Amsterdam Center for Forensic Science and Medicine, University of Amsterdam, P.O. Box 94157, Amsterdam 1090GD, The Netherlands
| |
Collapse
|
5
|
Tangeten C, Zouaoui Boudjeltia K, Delporte C, Van Antwerpen P, Korpak K. Unexpected Role of MPO-Oxidized LDLs in Atherosclerosis: In between Inflammation and Its Resolution. Antioxidants (Basel) 2022; 11:antiox11050874. [PMID: 35624738 PMCID: PMC9137493 DOI: 10.3390/antiox11050874] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/02/2023] Open
Abstract
Inflammation and its resolution are the result of the balance between pro-inflammatory and pro-resolving factors, such as specialized pro-resolving mediators (SPMs). This balance is crucial for plaque evolution in atherosclerosis, a chronic inflammatory disease. Myeloperoxidase (MPO) has been related to oxidative stress and atherosclerosis, and MPO-oxidized low-density lipoproteins (Mox-LDLs) have specific characteristics and effects. They participate in foam cell formation and cause specific reactions when interacting with macrophages and endothelial cells. They also increase the production of intracellular reactive oxygen species (ROS) in macrophages and the resulting antioxidant response. Mox-LDLs also drive macrophage polarization. Mox-LDLs are known to be pro-inflammatory particles. However, in the presence of Mox-LDLs, endothelial cells produce resolvin D1 (RvD1), a SPM. SPMs are involved in the resolution of inflammation by stimulating efferocytosis and by reducing the adhesion and recruitment of neutrophils and monocytes. RvD1 also induces the synthesis of other SPMs. In vitro, Mox-LDLs have a dual effect by promoting RvD1 release and inducing a more anti-inflammatory phenotype macrophage, thereby having a mixed effect on inflammation. In this review, we discuss the interrelationship between MPO, Mox-LDLs, and resolvins, highlighting a new perception of the role of Mox-LDLs in atherosclerosis.
Collapse
Affiliation(s)
- Cecilia Tangeten
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (P.V.A.)
- Correspondence: ; Tel.: +32-2-650-5331
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine, ULB 222 Unit, CHU-Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium; (K.Z.B.); (K.K.)
| | - Cedric Delporte
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| | - Pierre Van Antwerpen
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| | - Keziah Korpak
- Laboratory of Experimental Medicine, ULB 222 Unit, CHU-Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium; (K.Z.B.); (K.K.)
- Department of Geriatric Medicine, CHU-Charleroi, Université Libre de Bruxelles, 6042 Charleroi, Belgium
| |
Collapse
|
6
|
Macrophages in Health and Non-Infectious Disease. Biomedicines 2021; 9:biomedicines9050460. [PMID: 33922416 PMCID: PMC8145399 DOI: 10.3390/biomedicines9050460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023] Open
Abstract
In this Special Issue of Biomedicines, we have many insightful reviews and research papers on the subject "Macrophages in Health and Non-infectious Disease", but first; we should discuss briefly the current situation in the field [...].
Collapse
|