1
|
Luo Y, Vivaldi Marrero E, Choudhary V, Bollag WB. Phosphatidylglycerol to Treat Chronic Skin Wounds in Diabetes. Pharmaceutics 2023; 15:1497. [PMID: 37242739 PMCID: PMC10222993 DOI: 10.3390/pharmaceutics15051497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This review proposes the use of dioleoylphosphatidylglycerol (DOPG) to enhance diabetic wound healing. Initially, the characteristics of diabetic wounds are examined, focusing on the epidermis. Hyperglycemia accompanying diabetes results in enhanced inflammation and oxidative stress in part through the generation of advanced glycation end-products (AGEs), in which glucose is conjugated to macromolecules. These AGEs activate inflammatory pathways; oxidative stress results from increased reactive oxygen species generation by mitochondria rendered dysfunctional by hyperglycemia. These factors work together to reduce the ability of keratinocytes to restore epidermal integrity, contributing to chronic diabetic wounds. DOPG has a pro-proliferative action on keratinocytes (through an unclear mechanism) and exerts an anti-inflammatory effect on keratinocytes and the innate immune system by inhibiting the activation of Toll-like receptors. DOPG has also been found to enhance macrophage mitochondrial function. Since these DOPG effects would be expected to counteract the increased oxidative stress (attributable in part to mitochondrial dysfunction), decreased keratinocyte proliferation, and enhanced inflammation that characterize chronic diabetic wounds, DOPG may be useful in stimulating wound healing. To date, efficacious therapies to promote the healing of chronic diabetic wounds are largely lacking; thus, DOPG may be added to the armamentarium of drugs to enhance diabetic wound healing.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
| | - Edymarie Vivaldi Marrero
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
| | - Vivek Choudhary
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Luo Y, Uaratanawong R, Choudhary V, Hardin M, Zhang C, Melnyk S, Chen X, Bollag WB. Advanced Glycation End Products and Activation of Toll-like Receptor-2 and -4 Induced Changes in Aquaporin-3 Expression in Mouse Keratinocytes. Int J Mol Sci 2023; 24:1376. [PMID: 36674890 PMCID: PMC9864132 DOI: 10.3390/ijms24021376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Prolonged inflammation and impaired re-epithelization are major contributing factors to chronic non-healing diabetic wounds; diabetes is also characterized by xerosis. Advanced glycation end products (AGEs), and the activation of toll-like receptors (TLRs), can trigger inflammatory responses. Aquaporin-3 (AQP3) plays essential roles in keratinocyte function and skin wound re-epithelialization/re-generation and hydration. Suberanilohydroxamic acid (SAHA), a histone deacetylase inhibitor, mimics the increased acetylation observed in diabetes. We investigated the effects of TLR2/TLR4 activators and AGEs on keratinocyte AQP3 expression in the presence and absence of SAHA. Primary mouse keratinocytes were treated with or without TLR2 agonist Pam3Cys-Ser-(Lys)4 (PAM), TLR4 agonist lipopolysaccharide (LPS), or AGEs, with or without SAHA. We found that (1) PAM and LPS significantly upregulated AQP3 protein basally (without SAHA) and PAM downregulated AQP3 protein with SAHA; and (2) AGEs (100 µg/mL) increased AQP3 protein expression basally and decreased AQP3 levels with SAHA. PAM and AGEs produced similar changes in AQP3 expression, suggesting a common pathway or potential crosstalk between TLR2 and AGEs signaling. Our findings suggest that TLR2 activation and AGEs may be beneficial for wound healing and skin hydration under normal conditions via AQP3 upregulation, but that these pathways are likely deleterious in diabetes chronically through decreased AQP3 expression.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Rawipan Uaratanawong
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Department of Medicine (Dermatology), Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Vivek Choudhary
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Mary Hardin
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Catherine Zhang
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Samuel Melnyk
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Xunsheng Chen
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
3
|
Ikarashi N, Kaneko M, Wakana D, Shinozaki Y, Tabata K, Nishinaka Y, Yoshida R, Watanabe T, Wakui N, Kon R, Sakai H, Kamei J, Hosoe T. Effect of Chimpi, dried citrus peel, on aquaporin-3 expression in HaCaT human epidermal keratinocytes. Mol Biol Rep 2022; 49:10175-10181. [PMID: 36030474 DOI: 10.1007/s11033-022-07892-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Chimpi, the dried peel of Citrus unshiu or Citrus reticulata, has various pharmacological effects. Chimpi extract was recently shown to affect the skin, including its inhibitory effect against atopic dermatitis. In this study, we analyzed the effects of Chimpi extract on the functional molecule aquaporin-3 (AQP3), which is involved in water transport and cell migration in the skin. METHODS AND RESULTS Chimpi extract was added to HaCaT human skin keratinocytes, and the AQP3 expression level was analyzed. A wound healing assay was performed to evaluate the effect of Chimpi extract on cell migration. The components of Chimpi extract and fractions obtained by liquid-liquid distribution studies were added to HaCaT cells, and AQP3 expression was analyzed. Chimpi extract significantly increased AQP3 expression in HaCaT cells at both the mRNA and protein levels. Immunocytochemical staining revealed that Chimpi extract also promoted the transfer of AQP3 to the cell membrane. Furthermore, Chimpi extract enhanced cell migration. Hesperidin, narirutin, and nobiletin did not increase AQP3 levels. Although the components contained in the fractions obtained from the chloroform, butanol, and water layer increased AQP3, the active components could not be identified. CONCLUSIONS These results reveal that Chimpi extract may increase AQP3 levels in keratinocytes and increase the dermal water content. Therefore, Chimpi extract may be effective for the management of dry skin.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Miho Kaneko
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Daigo Wakana
- Department of Bioregulatory Science, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yui Shinozaki
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Keito Tabata
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yui Nishinaka
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Ryotaro Yoshida
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tomofumi Watanabe
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Nobuyuki Wakui
- Division of Applied Pharmaceutical Education and Research, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Junzo Kamei
- Advanced Research Institute for Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| |
Collapse
|
4
|
Ikarashi N, Shiseki M, Yoshida R, Tabata K, Kimura R, Watanabe T, Kon R, Sakai H, Kamei J. Cannabidiol Application Increases Cutaneous Aquaporin-3 and Exerts a Skin Moisturizing Effect. Pharmaceuticals (Basel) 2021; 14:ph14090879. [PMID: 34577578 PMCID: PMC8469387 DOI: 10.3390/ph14090879] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/28/2022] Open
Abstract
Cannabidiol (CBD) is a major nonpsychotropic component of Cannabis sativa with various pharmacological activities. In this study, we investigated the skin moisturizing effect of CBD and its mechanism. A 1% CBD solution was applied daily to skin of HR-1 hairless (Seven-week-old, male) for 14 days. The dermal water content in CBD-treated mice was significantly increased compared to that in the control group. Furthermore, no inflammatory reaction in the skin and no obvious skin disorders were observed. The mRNA expression levels of loricrin, filaggrin, collagen, hyaluronic acid degrading enzyme, hyaluronic acid synthase, ceramide degrading enzyme, and ceramide synthase in the skin were not affected by the application of CBD. However, only aquaporin-3 (AQP3), a member of the aquaporin family, showed significantly higher levels in the CBD-treated group than in the control group at both the mRNA and protein levels. It was revealed that CBD has a moisturizing effect on the skin. In addition, it is possible that increased expression of AQP3, which plays an important role in skin water retention, is a contributor to the mechanism. CBD is expected to be developed in the future as a cosmetic material with a unique mechanism.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
- Correspondence: (N.I.); (J.K.); Tel.: +81-3-5498-5918 (N.I.); +81-3-3815-7021 (J.K.)
| | - Marina Shiseki
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Ryotaro Yoshida
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Keito Tabata
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Rina Kimura
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Tomofumi Watanabe
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (M.S.); (R.Y.); (K.T.); (R.K.); (T.W.); (R.K.); (H.S.)
- Juntendo Advanced Research Institute for Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Correspondence: (N.I.); (J.K.); Tel.: +81-3-5498-5918 (N.I.); +81-3-3815-7021 (J.K.)
| |
Collapse
|
5
|
Aboeldahab S, Khalil F, Ezz Eldawla R. Clinical and Laboratory Characteristics of Elderly Patients with Pruritus. Clin Cosmet Investig Dermatol 2021; 14:1009-1015. [PMID: 34408461 PMCID: PMC8364348 DOI: 10.2147/ccid.s322527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
Introduction For elderly, pruritus is considered the most common complaint in outpatient clinic. Pruritus occurs in association with primary skin disorders and can also be caused by many diseases and drugs. The aim of the work was to study clinical and laboratory characteristics of elderly patients with pruritus in Sohag, Egypt. Patients and Methods A cross-sectional study was conducted on 225 patients aged ≥60 years of both sexes complaining of pruritus and 160 age- and sex-matched patient group complaining of non-pruritic dermatological diseases. CBC, ESR, renal function tests, serology for HBV and HCV and blood glucose levels were done routinely in all patients (both groups). Skin biopsy was done in some selected cases. Results The mean duration of pruritus was 4.23 ± 4.9 months and was generalized in 73.8% of cases with moderate severity in 35.1% with winter exacerbation in 20%. Dermatological causes of pruritus were detected in 54.2%, followed by systemic causes in 29.8%. Eczema was the most common skin cause of senile itching in 33.7%, while renal diseases were the most common systemic cause in 46.2%. Conclusion Senile pruritus is a common problem in elderly. Early and proper management is mandatory to improve their quality of life.
Collapse
Affiliation(s)
- Soha Aboeldahab
- Dermatology and Venerology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Fatma Khalil
- Dermatology Department, Sohag General Hospital, Sohag, Egypt
| | - Reham Ezz Eldawla
- Dermatology and Venerology, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
6
|
Wound-Healing and Skin-Moisturizing Effects of Sasa veitchii Extract. Healthcare (Basel) 2021; 9:healthcare9060761. [PMID: 34205315 PMCID: PMC8235400 DOI: 10.3390/healthcare9060761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022] Open
Abstract
Sasa veitchii (S. veitchii) is a traditional herb derived from the bamboo genus, which is collectively called Kumazasa. Although Kumazasa extract is believed to have various effects on the skin, there is little scientific evidence for these effects. In this study, we aimed to obtain scientific evidence regarding the wound-healing and skin-moisturizing effects of Kumazasa extract. Kumazasa extract was applied to the skin of a mouse wound model for 14 days, and the wound area and dermal water content were measured. Mice treated with Kumazasa extract had smaller wound areas than control mice. The dermal water content in the Kumazasa extract-treated group was significantly higher than that in the control group. The mRNA and protein expression levels of cutaneous aquaporin-3 (AQP3), which is involved in wound healing and increases in dermal water content, were significantly increased by treatment with Kumazasa extract. Kumazasa extract-treated HaCaT cells exhibited significantly higher AQP3 expression and p38 mitogen-activated protein kinase (MAPK) phosphorylation than control cells. With continuous application, Kumazasa extract increases AQP3 expression and exerts wound-healing and moisturizing effects. The increase in AQP3 expression elicited by Kumazasa extract may be due to enhancement of transcription via activation of p38 MAPK signaling.
Collapse
|
7
|
da Silva IV, Silva AG, Pimpão C, Soveral G. Skin aquaporins as druggable targets: Promoting health by addressing the disease. Biochimie 2021; 188:35-44. [PMID: 34097985 DOI: 10.1016/j.biochi.2021.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
Skin is the most vulnerable organ of the human body since it is the first line of defense, covering the entire external body surface. Additionally, skin has a critical role in thermoregulation, sensation, immunological surveillance, and biochemical processes such as Vitamin D3 production by ultraviolet irradiation. The ability of the skin layers and resident cells to maintain skin physiology, such as hydration, regulation of keratinocytes proliferation and differentiation and wound healing, is supported by key proteins such as aquaporins (AQPs) that facilitate the movements of water and small neutral solutes across membranes. Various AQP isoforms have been detected in different skin-resident cells where they perform specific roles, and their dysregulation has been associated with several skin pathologies. This review summarizes the current knowledge of AQPs involvement in skin physiology and pathology, highlighting their potential as druggable targets for the treatment of skin disorders.
Collapse
Affiliation(s)
- Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal.
| | - Andreia G Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal.
| |
Collapse
|