1
|
Li C, Luo SX, Liang TW, Song D, Fu JX. Gender correlation between sleep duration and risk of coronary heart disease: a systematic review and meta-analysis. Front Cardiovasc Med 2025; 12:1452006. [PMID: 40201790 PMCID: PMC11975931 DOI: 10.3389/fcvm.2025.1452006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Objective The influence of extreme sleep duration on coronary heart disease (CHD) risk across genders remains a debated topic. Methods This analysis gathers observational studies that explore association between varying sleep durations and CHD risks. Trend estimation employs generalized least squares, converting specific category risk estimates into relative risks (RR) per hour of sleep increase. A two-stage hierarchical regression model evaluates potential linear dose-response relationships. Data analysis utilizes random-effects restricted cubic spline models with four knots. Results Involving 17 studies and 906,908 participants, this meta-analysis identifies a pronounced U-shaped nonlinear relationship between sleep duration and CHD risk applicable to both genders (P < 0.01). Notably, shorter sleep durations are linked to higher CHD risks in women, whereas longer durations are more consequential for men. The optimal sleep duration for minimizing CHD risk is between 7.0-8.0 h daily for men and 7.5-8.5 h for women. Conclusion The influence of sleep duration on CHD risk differs significantly between genders. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/myprospero, identifier (CRD42023478235).
Collapse
Affiliation(s)
- Cun Li
- School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Shun-xin Luo
- School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Tian-wei Liang
- School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Dan Song
- School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Jin-xiao Fu
- Geriatric Department, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Cui HK, Tang CJ, Gao Y, Li ZA, Zhang J, Li YD. An integrative analysis of single-cell and bulk transcriptome and bidirectional mendelian randomization analysis identified C1Q as a novel stimulated risk gene for Atherosclerosis. Front Immunol 2023; 14:1289223. [PMID: 38179058 PMCID: PMC10764496 DOI: 10.3389/fimmu.2023.1289223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Background The role of complement component 1q (C1Q) related genes on human atherosclerotic plaques (HAP) is less known. Our aim is to establish C1Q associated hub genes using single-cell RNA sequencing (scRNA-seq) and bulk RNA analysis to diagnose and predict HAP patients more effectively and investigate the association between C1Q and HAP (ischemic stroke) using bidirectional Mendelian randomization (MR) analysis. Methods HAP scRNA-seq and bulk-RNA data were download from the Gene Expression Omnibus (GEO) database. The C1Q-related hub genes was screened using the GBM, LASSO and XGBoost algorithms. We built machine learning models to diagnose and distinguish between types of atherosclerosis using generalized linear models and receiver operating characteristics (ROC) analyses. Further, we scored the HALLMARK_COMPLEMENT signaling pathway using ssGSEA and confirmed hub gene expression through qRT-PCR in RAW264.7 macrophages and apoE-/- mice. Furthermore, the risk association between C1Q and HAP was assessed through bidirectional MR analysis, with C1Q as exposure and ischemic stroke (IS, large artery atherosclerosis) as outcomes. Inverse variance weighting (IVW) was used as the main method. Results We utilized scRNA-seq dataset (GSE159677) to identify 24 cell clusters and 12 cell types, and revealed seven C1Q associated DEGs in both the scRNA-seq and GEO datasets. We then used GBM, LASSO and XGBoost to select C1QA and C1QC from the seven DEGs. Our findings indicated that both training and validation cohorts had satisfactory diagnostic accuracy for identifying patients with HPAs. Additionally, we confirmed SPI1 as a potential TF responsible for regulating the two hub genes in HAP. Our analysis further revealed that the HALLMARK_COMPLEMENT signaling pathway was correlated and activated with C1QA and C1QC. We confirmed high expression levels of C1QA, C1QC and SPI1 in ox-LDL-treated RAW264.7 macrophages and apoE-/- mice using qPCR. The results of MR indicated that there was a positive association between the genetic risk of C1Q and IS, as evidenced by an odds ratio (OR) of 1.118 (95%CI: 1.013-1.234, P = 0.027). Conclusion The authors have effectively developed and validated a novel diagnostic signature comprising two genes for HAP, while MR analysis has provided evidence supporting a favorable association of C1Q on IS.
Collapse
Affiliation(s)
- Hong-Kai Cui
- Department of Neurological Intervention, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chao-Jie Tang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gao
- Department of Neurological Intervention, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zi-Ang Li
- Department of Neurological Intervention, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jian Zhang
- Department of Neurological Intervention, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yong-Dong Li
- Department of Neurological Intervention, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Zhao J, Liang D, Xie T, Qiang J, Sun Q, Yang L, Wang W. Nicorandil Exerts Anticonvulsant Effects in Pentylenetetrazol-Induced Seizures and Maximal-Electroshock-Induced Seizures by Downregulating Excitability in Hippocampal Pyramidal Neurons. Neurochem Res 2023:10.1007/s11064-023-03932-w. [PMID: 37076745 DOI: 10.1007/s11064-023-03932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
N-(2-hydroxyethyl) nicotinamide nitrate (nicorandil), a nitrate that activates adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, is generally used in the treatment of angina and offers long-term cardioprotective effects. It has been reported that several KATP channel openers can effectively alleviate the symptoms of seizure. The purpose of this study was to investigate the improvement in seizures induced by nicorandil. In this study, seizure tests were used to evaluate the effect of different doses of nicorandil by analysing seizure incidence, including minimal clonic seizure and generalised tonic-clonic seizure. We used a maximal electroshock seizure (MES) model, a metrazol maximal seizure (MMS) model and a chronic pentylenetetrazol (PTZ)-induced seizure model to evaluate the effect of nicorandil in improving seizures. Each mouse in the MES model was given an electric shock, while those in the nicorandil group received 0.5, 1, 2, 3 and 6 mg/kg of nicorandil by intraperitoneal injection, respectively. In the MMS model, the mice in the PTZ group and the nicorandil group were injected subcutaneously with PTZ (90 mg/kg), and the mice in the nicorandil group were injected intraperitoneally with 1, 3 and 5 mg/kg nicorandil, respectively. In the chronic PTZ-induced seizure model, the mice in the PTZ group and the nicorandil group were injected intraperitoneally with PTZ (40 mg/kg), and the mice in the nicorandil group were each given 1 and 3 mg/kg of PTZ at a volume of 200 nL. Brain slices containing the hippocampus were prepared, and cell-attached recording was used to record the spontaneous firing of pyramidal neurons in the hippocampal CA1 region. Nicorandil (i.p.) significantly increased both the maximum electroconvulsive protection rate in the MES model and the seizure latency in the MMS model. Nicorandil infused directly onto the hippocampal CA1 region via an implanted cannula relieved symptoms in chronic PTZ-induced seizures. The excitability of pyramidal neurons in the hippocampal CA1 region of the mice was significantly increased after both the acute and chronic administration of PTZ. To a certain extent, nicorandil reversed the increase in both firing frequency and proportion of burst spikes caused by PTZ (P < 0.05). Our results suggest that nicorandil functions by downregulating the excitability of pyramidal neurons in the hippocampal CA1 region of mice and is a potential candidate for the treatment of seizures.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Dan Liang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Tao Xie
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Jing Qiang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Qian Sun
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Lan Yang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Weiping Wang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
4
|
Salzmann M, Platzer H, Mussbacher M, Derler M, Lenz M, Haider P, Brekalo M, Kral-Pointner JB, Kastl S, Speidl WS, Preissner KT, Schubert U, Bischoff M, Uhrin P, Wojta J, Hohensinner PJ. Staphylococcus aureus extracellular adherence protein (Eap) reduces immune cell phenotype in developing but not in established atherosclerotic lesions. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166616. [PMID: 36513287 DOI: 10.1016/j.bbadis.2022.166616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a chronic, inflammatory disease of the vessel wall where triggered immune cells bind to inflamed endothelium, extravasate and sustain local inflammation. Leukocyte adhesion and extravasation are mediated by adhesion molecules expressed by activated endothelial cells, like intercellular adhesion molecule 1 (ICAM-1). Extracellular adherence protein (Eap) from Staphylococcus aureus binds to a plethora of extracellular matrix proteins, including ICAM-1 and its ligands macrophage-1 antigen (Mac-1, αMβ2) and lymphocyte function-associated antigen 1 (LFA-1, αLβ2), thereby disrupting the interaction between leukocytes and endothelial cells. We aimed to use Eap to inhibit the interaction of leukocytes with activated endothelial cells in settings of developing and established atherosclerosis in apolipoprotein E (ApoE) deficient mice on high-fat diet. In developing atherosclerosis, Eap treatment reduced circulating platelet-neutrophil aggregates as well as infiltration of T cells and neutrophils into the growing plaque, accompanied by reduced formation of neutrophil extracellular traps (NETs). However, plaque size did not change. Intervention treatment with Eap of already established plaques did not result in cellular or morphological plaque changes, whereas T cell infiltration was increased and thereby again modulated by Eap. We conclude that although Eap leads to cellular changes in developing plaques, clinical implications might be limited as patients are usually treated at a more advanced stage of disease progression. Hence, usage of Eap might be an interesting mechanistic tool for cellular infiltration during plaque development in basic research but not a clinical target.
Collapse
Affiliation(s)
- Manuel Salzmann
- Department of Internal Medicine II/Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Harald Platzer
- Department of Internal Medicine II/Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Marion Mussbacher
- Department of Pharmacology and Toxicology, University of Graz, Humboldtstraße 46, 8010 Graz, Austria.
| | - Martina Derler
- Department of Pharmacology and Toxicology, University of Graz, Humboldtstraße 46, 8010 Graz, Austria.
| | - Max Lenz
- Department of Internal Medicine II/Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Patrick Haider
- Department of Internal Medicine II/Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Mira Brekalo
- Department of Internal Medicine II/Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Julia B Kral-Pointner
- Department of Internal Medicine II/Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Stefan Kastl
- Department of Internal Medicine II/Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Walter S Speidl
- Department of Internal Medicine II/Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Klaus T Preissner
- Department of Cardiology, Kerckhoff Heart Research Institute, Justus-Liebig-University, Aulweg 129, 35392 Giessen, Germany; Department of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Uwe Schubert
- Department of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße 100, 66424 Homburg, Germany.
| | - Pavel Uhrin
- Center for Physiology and Pharmacology, Schwarzspanierstraße 17A, 1090 Vienna, Austria.
| | - Johann Wojta
- Department of Internal Medicine II/Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Philipp J Hohensinner
- Ludwig Boltzmann Institute for Cardiovascular Research, Waehringer Guertel 18-20, 1090 Vienna, Austria; Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
5
|
Pharmacologic modulation of intracellular Na
+
concentration with ranolazine impacts inflammatory response in humans and mice. Proc Natl Acad Sci U S A 2022; 119:e2207020119. [PMID: 35858345 PMCID: PMC9303949 DOI: 10.1073/pnas.2207020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammation is a key process accompanying cardiovascular disease. Reducing inflammation is therefore an important therapeutic option. We provide evidence, that Na+ and Ca2+ modulation regulate the inflammatory response. Reducing intracellular Na+ pharmacologically using the drug ranolazine reduced the influx of Ca2+ during inflammation and thereby reduced the cellular production of inflammatory mediators. Similarly, reduction of extracellular Na+ and knockdown of a Na+–Ca2+ exchanger led to reduced inflammation. Our in vitro finding translated to in vivo experiments as ranolazine treatment led to reduced atherosclerotic plaque growth, increased plaque stability, and diminished inflammation in a mouse model. Finally, we were able to observe the antiinflammatory effect of Na+ modulation in human patients, demonstrating that inflammation was reduced after treatment with ranolazine. Changes in Ca2+ influx during proinflammatory stimulation modulates cellular responses, including the subsequent activation of inflammation. Whereas the involvement of Ca2+ has been widely acknowledged, little is known about the role of Na+. Ranolazine, a piperazine derivative and established antianginal drug, is known to reduce intracellular Na+ as well as Ca2+ levels. In stable coronary artery disease patients (n = 51) we observed reduced levels of high-sensitive C-reactive protein (CRP) 3 mo after the start of ranolazine treatment (n = 25) as compared to the control group. Furthermore, we found that in 3,808 acute coronary syndrome patients of the MERLIN‐TIMI 36 trial, individuals treated with ranolazine (1,934 patients) showed reduced CRP values compared to placebo-treated patients. The antiinflammatory effects of sodium modulation were further confirmed in an atherosclerotic mouse model. LDL−/− mice on a high-fat diet were treated with ranolazine, resulting in a reduced atherosclerotic plaque burden, increased plaque stability, and reduced activation of the immune system. Pharmacological Na+ inhibition by ranolazine led to reduced express of adhesion molecules and proinflammatory cytokines and reduced adhesion of leukocytes to activated endothelium both in vitro and in vivo. We demonstrate that functional Na+ shuttling is required for a full cellular response to inflammation and that inhibition of Na+ influx results in an attenuated inflammatory reaction. In conclusion, we demonstrate that inhibition of Na+–Ca2+ exchange during inflammation reduces the inflammatory response in human endothelial cells in vitro, in a mouse atherosclerotic disease model, and in human patients.
Collapse
|
6
|
Yang Y, Yi X, Cai Y, Zhang Y, Xu Z. Immune-Associated Gene Signatures and Subtypes to Predict the Progression of Atherosclerotic Plaques Based on Machine Learning. Front Pharmacol 2022; 13:865624. [PMID: 35559253 PMCID: PMC9086243 DOI: 10.3389/fphar.2022.865624] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: Experimental and clinical evidence suggests that atherosclerosis is a chronic inflammatory disease. Our study was conducted for uncovering the roles of immune-associated genes during atherosclerotic plaque progression. Methods: Gene expression profiling of GSE28829, GSE43292, GSE41571, and GSE120521 datasets was retrieved from the GEO database. Three machine learning algorithms, least absolute shrinkage, and selection operator (LASSO), random forest, and support vector machine–recursive feature elimination (SVM-RFE) were utilized for screening characteristic genes among atherosclerotic plaque progression- and immune-associated genes. ROC curves were generated for estimating the diagnostic efficacy. Immune cell infiltrations were estimated via ssGSEA, and immune checkpoints were quantified. CMap analysis was implemented to screen potential small-molecule compounds. Atherosclerotic plaque specimens were classified using a consensus clustering approach. Results: Seven characteristic genes (TNFSF13B, CCL5, CCL19, ITGAL, CD14, GZMB, and BTK) were identified, which enabled the prediction of progression of atherosclerotic plaques. Higher immune cell infiltrations and immune checkpoint expressions were found in advanced-stage than in early-stage atherosclerotic plaques and were positively linked to characteristic genes. Patients could clinically benefit from the characteristic gene-based nomogram. Several small molecular compounds were predicted based on the characteristic genes. Two subtypes, namely, C1 immune subtype and C2 non-immune subtype, were classified across atherosclerotic plaques. The characteristic genes presented higher expression in C1 than in C2 subtypes. Conclusion: Our findings provide several promising atherosclerotic plaque progression- and immune-associated genes as well as immune subtypes, which might enable to assist the design of more accurately tailored cardiovascular immunotherapy.
Collapse
Affiliation(s)
- Yujia Yang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xu Yi
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yue Cai
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuan Zhang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqiang Xu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
7
|
The Anti-Inflammatory and Antiapoptotic Effects of Nicorandil in Antisepsis Cardiomyopathy. Cardiovasc Ther 2021; 2021:5822920. [PMID: 34950238 PMCID: PMC8668340 DOI: 10.1155/2021/5822920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Objective To observe the effect of nicorandil on septic rats and explore the possible mechanism of its myocardial protection, so as to provide theoretical basis for the treatment of septic cardiomyopathy. Methods Sixty male clean SD rats were selected as the research objects and randomly divided into 3 groups by random number method: sham operation group (sham group), cecal ligation and perforation group (CLP group), nicorandil treatment group (nicorandil+CLP group). After the operation, the nicorandil group was pumped with nicorandil diluent 1 ml/h (2 mg/kg/h) with a micropump for 6 hours. The sham group and CLP group were pumped with the same amount of normal saline 1 ml/h for a total of 6 hours. After 24 hours, the survival of the rats in each group was observed. The expression of troponin I (cTnI), tumor necrosis factor α (TNF-α), and interleukin-1β (IL-1β) in the serum was detected. Then, the ventricle was harvested for the observation of the pathological changes of myocardium. Quantitative real-time polymerase chain reaction and immunostaining were used to detect myocardial tissue apoptosis, and Western blot methods were used to detect protein expression changes in nuclear factor-κB (NF-κB) pathways. Results 24 hours after operation, the survival rate of the rats in the CLP group was 60%. There was a large amount of necrosis of myocardial cells and inflammatory cell infiltration. The survival rate of rats in the nicorandil+CLP group was 75%. Compared with the CLP group, the necrosis of myocardial cells was reduced, and there was still a small amount of inflammatory cell infiltration. In the CLP group, myocardial inflammation and apoptosis were significant, and NF-κB pathway was activated. On the contrary, the NF-κB pathway in the nicorandil+CLP group was inhibited, and the expression of inflammatory factors and apoptosis factors was inhibited. Conclusion Nicorandil can reduce the release of inflammatory factors in septic rats, improve the inflammatory response, reduce myocardial damage, and play a myocardial protective effect. Its mechanism may be related to the inhibition of the activation of NF-κB signaling pathway.
Collapse
|
8
|
Ma T, Zhang Z, Chen Y, Su H, Deng X, Liu X, Fan Y. Delivery of Nitric Oxide in the Cardiovascular System: Implications for Clinical Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms222212166. [PMID: 34830052 PMCID: PMC8625126 DOI: 10.3390/ijms222212166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) is a key molecule in cardiovascular homeostasis and its abnormal delivery is highly associated with the occurrence and development of cardiovascular disease (CVD). The assessment and manipulation of NO delivery is crucial to the diagnosis and therapy of CVD, such as endothelial dysfunction, atherosclerotic progression, pulmonary hypertension, and cardiovascular manifestations of coronavirus (COVID-19). However, due to the low concentration and fast reaction characteristics of NO in the cardiovascular system, clinical applications centered on NO delivery are challenging. In this tutorial review, we first summarized the methods to estimate the in vivo NO delivery process, based on computational modeling and flow-mediated dilation, to assess endothelial function and vulnerability of atherosclerotic plaque. Then, emerging bioimaging technologies that have the potential to experimentally measure arterial NO concentration were discussed, including Raman spectroscopy and electrochemical sensors. In addition to diagnostic methods, therapies aimed at controlling NO delivery to regulate CVD were reviewed, including the NO release platform to treat endothelial dysfunction and atherosclerosis and inhaled NO therapy to treat pulmonary hypertension and COVID-19. Two potential methods to improve the effectiveness of existing NO therapy were also discussed, including the combination of NO release platform and computational modeling, and stem cell therapy, which currently remains at the laboratory stage but has clinical potential for the treatment of CVD.
Collapse
|
9
|
Hohensinner PJ, Lenz M, Haider P, Mayer J, Richter M, Kaun C, Goederle L, Brekalo M, Salzmann M, Sharma S, Fischer MB, Stojkovic S, Ramsmayer D, Hengstenberg C, Podesser BK, Huber K, Binder CJ, Wojta J, Speidl WS. Pharmacological inhibition of fatty acid oxidation reduces atherosclerosis progression by suppression of macrophage NLRP3 inflammasome activation. Biochem Pharmacol 2021; 190:114634. [PMID: 34058186 DOI: 10.1016/j.bcp.2021.114634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Inflammation is a key process during atherosclerotic lesion development and propagation. Recent evidence showed clearly that especially the inhibition of interleukin (IL)-1β reduced atherosclerotic adverse events in human patients. Fatty acid oxidation (FAO) was previously demonstrated to interact with the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) pathway which is required for mature IL-1β secretion. To understand possible anti-inflammatory properties of FAO inhibition, we tested the effect of pharmacological FAO inhibition using the inhibitor for long-chain 3-ketoacyl coenzyme A thiolase trimetazidine on atherosclerotic plaque development and inflammation. EXPERIMENTAL APPROACH The effect of FAO inhibition was determined in LDL-R-/- male mice on a C57/BL6 background. In vitro effects of trimetazidine treatment were analyzed in human umbilical vein endothelial cells and human monocyte derived macrophages. KEY RESULTS We were able to demonstrate that inhibition of FAO reduced atherosclerotic plaque growth. We did not find direct anti-inflammatory properties of trimetazidine in endothelial cells or macrophages in vitro. However, we found that the activation of the NLRP3 system and the secretion of IL-1β were significantly reduced in macrophages after FAO inhibition. These results were confirmed in atherosclerotic lesions of mice treated with trimetazidine as they showed a significant reduction of IL-1β and cleaved caspase-1 in the atherosclerotic lesion as well as of IL-1β and IL-18 in the circulation. CONCLUSION Overall, we therefore suggest that the main mechanism of reducing inflammation of trimetazidine and FAO inhibition is the reduction of the NLRP-3 activation leading to reduced levels of the proinflammatory cytokine IL-1β.
Collapse
Affiliation(s)
- Philipp J Hohensinner
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Max Lenz
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Patrick Haider
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Julia Mayer
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Manuela Richter
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Christoph Kaun
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Laura Goederle
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Mira Brekalo
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Smriti Sharma
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Michael B Fischer
- Clinic for Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria; Department for Health Science and Biomedicine, Danube University Krems, Krems, Austria
| | - Stefan Stojkovic
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Daniel Ramsmayer
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Christian Hengstenberg
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Kurt Huber
- 3(rd) Medical Department, Wilhelminenhospital, Vienna, Austria; Sigmund Freud University, Medical Faculty, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Core Facilities, Medical University of Vienna, Vienna, Austria.
| | - Walter S Speidl
- Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
An S, Huang H, Wang H, Jiang Y. Prophylactically injection of Nicorandil to reduce no-reflow phenomenon during PCI in acute STEMI patients: Protocol of a double-blinded, randomized, placebo-controlled trial. Medicine (Baltimore) 2021; 100:e25500. [PMID: 33847663 PMCID: PMC8052050 DOI: 10.1097/md.0000000000025500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION An acute ST-elevation myocardial infarction (STEMI) is a very serious type of heart attack and a profoundly life-threatening medical emergency, and percutaneous coronary intervention (PCI) is the preferred strategy. However, in patients undergoing primary PCI, 30% to 40% may suffer the no-reflow phenomenon (NRP), and it could expand the myocardial infarction area and accompanied with high rehospitalization rate and fatality rate. In this study, we try to conduct a double blinded, randomized, placebo-controlled trial to observe whether the prophylactically intracoronary administration of Nicorandil could reduce the occurrence of NRP in STEMI patients undergoing PCI. METHODS Simple randomization in a 1:1 ratio will be made in blocks of variable size according to a random numbers generated by Excel 2010 to divide the patients to treatment group (Nicorandil) and control group (Saline). The outcomes are the occurrence of NRP, levels of interleukin-6 and HS-CRP, cTnT, and CK-MB before, and every 4 hours following PCI, and major adverse cardiovascular events at day 30. SPSS 23.0 (IBM, Chicago, IL) will be used, and P-value < .05 will be considered statistically significant. CONCLUSIONS The findings will determine the efficacy of prophylactically intracoronary administration of Nicorandil to reduce the occurrence of NRP during PCI in acute STEMI patients. TRIAL REGISTRATION OSF Registration number: DOI 10.17605/OSF.IO/QPF3V.
Collapse
|