1
|
Verstappen K, Bieler L, Barroca N, Bronkhorst EM, Couillard‐Després S, Leeuwenburgh SC, Marques PA, Klymov A, Walboomers XF. Application of Adipose Extracellular Matrix and Reduced Graphene Oxide Nanocomposites for Spinal Cord Injury Repair. Adv Healthc Mater 2025; 14:e2402775. [PMID: 39668418 PMCID: PMC11773115 DOI: 10.1002/adhm.202402775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/21/2024] [Indexed: 12/14/2024]
Abstract
Graphene-based materials (GBMs) hold strong promise to restore the spinal cord microenvironment and promote functional recovery after spinal cord injury (SCI). Nanocomposites consisting of reduced graphene oxide (rGO) and adipose tissue-derived extracellular matrix (adECM) are known to promote neuronal growth in vitro and to evoke a biocompatible response in vivo when implanted on top of the intact spinal cord. In this study, pristine adECM and adECM-rGO nanocomposites are implanted directly after hemisection SCI in rats. Scaffolds composed of collagen type I (COL) are applied as negative control, based on evidence that COL triggers integrin-mediated astrogliosis. However, COL scaffolds induce orthotopic bone formation in the lesion site and are therefore excluded from further analyses. Compared to pristine adECM, adECM-rGO nanocomposites completely restore spinal cord integrity. Macrophage-mediated uptake and clearance of rGO remnants is observed as early as 3 weeks post-implantation. Nanocomposites show an elevated presence of βIII-tubulin-positive axons in the host-material interface after 8 weeks, yet scaffold penetration by axons is only occasionally observed. This is partially due to an increased expression of chondroitin sulfate proteoglycans (CSPGs) within the nanocomposites, even though reactive astrogliosis is unaltered. Despite the complete restoration of tissue architecture, adECM-rGO treatment does not significantly improve functional recovery.
Collapse
Affiliation(s)
- Kest Verstappen
- Department of Dentistry‐Regenerative BiomaterialsRadboud University Medical CenterNijmegen6525 EXThe Netherlands
| | - Lara Bieler
- Institute of Experimental NeuroregenerationParacelsus Medical UniversitySalzburg5020Austria
- Austrian Cluster for Tissue RegenerationVienna1200Austria
| | - Nathalie Barroca
- Centre for Mechanical Technology and Automation (TEMA)Intelligent Systems Associate Laboratory (LASI)Department of Mechanical EngineeringUniversity of AveiroAveiro3810‐193Portugal
| | - Ewald M. Bronkhorst
- Department of Dentistry‐Regenerative BiomaterialsRadboud University Medical CenterNijmegen6525 EXThe Netherlands
| | - Sébastien Couillard‐Després
- Institute of Experimental NeuroregenerationParacelsus Medical UniversitySalzburg5020Austria
- Austrian Cluster for Tissue RegenerationVienna1200Austria
| | - Sander C.G. Leeuwenburgh
- Department of Dentistry‐Regenerative BiomaterialsRadboud University Medical CenterNijmegen6525 EXThe Netherlands
| | - Paula A.A.P. Marques
- Centre for Mechanical Technology and Automation (TEMA)Intelligent Systems Associate Laboratory (LASI)Department of Mechanical EngineeringUniversity of AveiroAveiro3810‐193Portugal
| | - Alexey Klymov
- Department of Dentistry‐Regenerative BiomaterialsRadboud University Medical CenterNijmegen6525 EXThe Netherlands
| | - X. Frank Walboomers
- Department of Dentistry‐Regenerative BiomaterialsRadboud University Medical CenterNijmegen6525 EXThe Netherlands
| |
Collapse
|
2
|
Li H, Guan Z, Wei L, Lu J, Tan Y, Wei Q. In situ co-deposition synthesis for collagen-Astragalus polysaccharide composite with intrafibrillar mineralization as potential biomimetic-bone repair materials. Regen Biomater 2024; 11:rbae070. [PMID: 39022124 PMCID: PMC11254354 DOI: 10.1093/rb/rbae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 07/20/2024] Open
Abstract
A hybrid material possessing both componential and structural imitation of bone tissue is the preferable composites for bone defect repair. Inspired by the microarchitecture of native bone, this work synthesized in vitro a functional mineralized collagen fibril (MCF) material by utilizing the method of in situ co-precipitation, which was designed to proceed in the presence of Astragalus polysaccharide (APS), thus achieving APS load within the biomineralized collagen-Astragalus polysaccharide (MCAPS) fibrils. Transmission electron microscope (TEM), selected area electron diffraction (SAED) and scanning electronic microscopy (SEM) identified the details of the intrafibrillar mineralization of the MCAPS fibrils, almost mimicking the secondary level of bone tissue microstructure. A relatively uniform and continuous mineral layer formed on and within all collagen fibrils and the mineral phase was identified as typical weak-crystalline hydroxyapatite (HA) with a Ca/P ratio of about 1.53. The proliferation of bone marrow-derived mesenchymal stem cells (BMSC) and mouse embryo osteoblast precursor cells (MC3T3-E1) obtained a significant promotion by MCAPS. As for the osteogenic properties of MCAPS, a distinct increase in the alkaline phosphatase (ALP) activity and the number of calcium nodules (CN) in BMSC and MC3T3-E1 was detected. The up-regulation of three osteogenic-related genes of RUNX-2, BMP-2 and OCN were confirmed via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to further verify the osteogenic performance promotion of MCAPS. A period of 14 days of culture demonstrated that MCAPS-L exhibited a preferable efficacy in enhancing ALP activity and CN quantity, as well as in promoting the expression of osteogenic-related genes over MCAPS-M and MCAPS-H, indicating that a lower dose of APS within the material of MCAPS is more appropriate for its osteogenesis promotion properties.
Collapse
Affiliation(s)
- Han Li
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Ziying Guan
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Liren Wei
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jian Lu
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yanfei Tan
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Qingrong Wei
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
3
|
Barbeck M, Alkildani S, Jung O. Editorial of the Special Issue: “Soft and Hard Tissue Regeneration”. Biomedicines 2022; 10:biomedicines10020356. [PMID: 35203565 PMCID: PMC8962288 DOI: 10.3390/biomedicines10020356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mike Barbeck
- Department of Ceramic Materials, Institute for Materials Science and Technologies, Technical University of Berlin, 10587 Berlin, Germany;
| | | | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
- Correspondence: ; Tel.: +49-(0)-176-81022467
| |
Collapse
|