1
|
Kemény KK, Kozinszky Z, Altorjay ÁT, Kolcsár B, Surányi A, Ducza E. Effect of Obesity on Aquaporin5 Expression in Human Placental and Uterus Tissues. J Clin Med 2024; 13:4490. [PMID: 39124758 PMCID: PMC11312882 DOI: 10.3390/jcm13154490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Background: Obesity and overweight are also becoming more prevalent among women of childbearing age and pregnant women. In maternal obesity, the activation of metabolic, inflammatory, and oxidative stress pathways is proven, which appears to be a key step in the pathological changes observed in placental and uterine function. Several recent studies have evidenced that aquaporins (AQPs) are critical players in adipose tissue biology and are involved in the onset of obesity. Methods: Our studies aimed to investigate the changes in placental volume and vascularization and measure the AQP5 expression and total antioxidant capacity (TAC) in the placenta and uterus tissues in obese and typical-weight mothers. We also aim to measure the AQP5 plasma concentration. Results: We found AQP5 dominance in the uterus and plasma at 34 weeks of normal pregnancy. The placental volume increased and the vascularization decreased in obese mothers compared to the control. The AQP5 expression increased in the uterus of the obese group and did not change in the placenta. The TAC decreased in the plasma of overweight mothers. Conclusions: We hypothesize that increased AQP5 expression prolongs the length of pregnancy and inhibits the onset of contractions. Based on our findings, we can develop diagnostic tests and provide new targets for tocolytic drug development.
Collapse
Affiliation(s)
- Kata Kira Kemény
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6726 Szeged, Hungary;
| | - Zoltan Kozinszky
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary; (Z.K.); (Á.T.A.); (B.K.); (A.S.)
- Capio Specialized Center for Gynecology, Solna, 171 45 Stockholm, Sweden
| | - Ábel T. Altorjay
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary; (Z.K.); (Á.T.A.); (B.K.); (A.S.)
| | - Bálint Kolcsár
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary; (Z.K.); (Á.T.A.); (B.K.); (A.S.)
| | - Andrea Surányi
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary; (Z.K.); (Á.T.A.); (B.K.); (A.S.)
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6726 Szeged, Hungary;
| |
Collapse
|
2
|
Castro R, Kalecký K, Huang NK, Petersen K, Singh V, Ross AC, Neuberger T, Bottiglieri T. A very-low carbohydrate content in a high-fat diet modifies the plasma metabolome and impacts systemic inflammation and experimental atherosclerosis. J Nutr Biochem 2024; 126:109562. [PMID: 38176626 DOI: 10.1016/j.jnutbio.2023.109562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/08/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
Ketogenic diets (KDs) are very high-fat low-carbohydrate diets that promote nutritional ketosis and are widely used for weight loss, although concerns about potential adverse cardiovascular effects remain. We investigated a very high-fat KD's vascular impact and plasma metabolic signature compared to a non-ketogenic high-fat diet (HFD). Apolipoprotein E deficient (ApoE -/-) mice were fed a KD (%kcal:81:1:18, fat/carbohydrate/protein), a non-ketogenic high-fat diet with half of the fat content (HFD) (%kcal:40:42:18, fat/carbohydrate/protein) for 12 weeks. Plasma samples were used to quantify the major ketone body beta-hydroxybutyrate (BHB) and several pro-inflammatory cytokines (IL-6, MCP-1, MIP-1alpha, and TNF alpha), and to targeted metabolomic profiling by mass spectrometry. In addition, aortic atherosclerotic lesions were quantified ex-vivo by magnetic resonance imaging (MRI) on a 14-tesla system. KD was atherogenic when compared to the control diet, but KD mice, when compared to the HFD group (1) had markedly higher levels of BHB and lower levels of cytokines, confirming the presence of ketosis that alleviated the well-established fat-induced systemic inflammation; (2) displayed significant changes in the plasma metabolome that included a decrease in lipophilic metabolites and an increase in hydrophilic metabolites; (3) had significantly lower levels of several atherogenic lipid metabolites, including phosphatidylcholines, cholesterol esters, sphingomyelins, and ceramides; and (4) presented significantly lower aortic plaque burden. KD was atherogenic and was associated with specific metabolic changes but alleviated the fat-induced inflammation and lessened the progression of atherosclerosis when compared to the HFD.
Collapse
Affiliation(s)
- Rita Castro
- Department of Nutritional Sciences, Penn State University, University Park, Pennsylvania, USA; Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - Karel Kalecký
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA; Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Neil K Huang
- Department of Nutritional Sciences, Penn State University, University Park, Pennsylvania, USA; Jean Mayer USDA Human Nutrition Research Center on Aging, Cardiovascular Nutrition Laboratory, Tufts University, Boston, Massachusetts, USA
| | - Kristina Petersen
- Department of Nutritional Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Vishal Singh
- Department of Nutritional Sciences, Penn State University, University Park, Pennsylvania, USA
| | - A Catharine Ross
- Department of Nutritional Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, USA; Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, Texas, USA
| |
Collapse
|
3
|
Andrews SG, Koehle AM, Paudel D, Neuberger T, Ross AC, Singh V, Bottiglieri T, Castro R. Diet-Induced Severe Hyperhomocysteinemia Promotes Atherosclerosis Progression and Dysregulates the Plasma Metabolome in Apolipoprotein-E-Deficient Mice. Nutrients 2024; 16:330. [PMID: 38337615 PMCID: PMC10856797 DOI: 10.3390/nu16030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Atherosclerosis and resulting cardiovascular disease are the leading causes of death in the US. Hyperhomocysteinemia (HHcy), or the accumulation of the intermediate amino acid homocysteine, is an independent risk factor for atherosclerosis, but the intricate biological processes mediating this effect remain elusive. Several factors regulate homocysteine levels, including the activity of several enzymes and adequate levels of their coenzymes, including pyridoxal phosphate (vitamin B6), folate (vitamin B9), and methylcobalamin (vitamin B12). To better understand the biological influence of HHcy on the development and progression of atherosclerosis, apolipoprotein-E-deficient (apoE-/- mice), a model for human atherosclerosis, were fed a hyperhomocysteinemic diet (low in methyl donors and B vitamins) (HHD) or a control diet (CD). After eight weeks, the plasma, aorta, and liver were collected to quantify methylation metabolites, while plasma was also used for a broad targeted metabolomic analysis. Aortic plaque burden in the brachiocephalic artery (BCA) was quantified via 14T magnetic resonance imaging (MRI). A severe accumulation of plasma and hepatic homocysteine and an increased BCA plaque burden were observed, thus confirming the atherogenic effect of the HHD. Moreover, a decreased methylation capacity in the plasma and aorta, indirectly assessed by the ratio of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH) was detected in HHD mice together with a 172-fold increase in aortic cystathionine levels, indicating increased flux through the transsulfuration pathway. Betaine and its metabolic precursor, choline, were significantly decreased in the livers of HHD mice versus CD mice. Widespread changes in the plasma metabolome of HHD mice versus CD animals were detected, including alterations in acylcarnitines, amino acids, bile acids, ceramides, sphingomyelins, triacylglycerol levels, and several indicators of dysfunctional lipid metabolism. This study confirms the relevance of severe HHcy in the progression of vascular plaque and suggests novel metabolic pathways implicated in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Stephen G. Andrews
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Anthony M. Koehle
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Devendra Paudel
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA;
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Vishal Singh
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA;
| | - Rita Castro
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
4
|
Castro R, Gullette S, Whalen C, Mattie FJ, Ge X, Ross AC, Neuberger T. High-field magnetic resonance microscopy of aortic plaques in a mouse model of atherosclerosis. MAGMA (NEW YORK, N.Y.) 2023; 36:887-896. [PMID: 37421501 PMCID: PMC10667155 DOI: 10.1007/s10334-023-01102-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 07/10/2023]
Abstract
OBJECTIVES Pre-clinical models of human atherosclerosis are extensively used; however, traditional histological methods do not allow for a holistic view of vascular lesions. We describe an ex-vivo, high-resolution MRI method that allows the 3 dimensional imaging of the vessel for aortic plaque visualization and quantification. MATERIALS AND METHODS Aortas from apolipoprotein-E-deficient (apoE-/-) mice fed an atherogenic diet (group 1) or a control diet (group 2) were subjected to 14 T MR imaging using a 3D gradient echo sequence. The obtained data sets were reconstructed (Matlab), segmented, and analyzed (Avizo). The aortas were further sectioned and subjected to traditional histological analysis (Oil-Red O and hematoxylin staining) for comparison. RESULTS A resolution up to 15 × 10x10 μm3 revealed that plaque burden (mm3) was significantly (p < 0.05) higher in group 1 (0.41 ± 0.25, n = 4) than in group 2 (0.01 ± 0.01, n = 3). The achieved resolution provided similar detail on the plaque and the vessel wall morphology compared with histology. Digital image segmentation of the aorta's lumen, plaque, and wall offered three-dimensional visualizations of the entire, intact aortas. DISCUSSION 14 T MR microscopy provided histology-like details of pathologically relevant vascular lesions. This work may provide the path research needs to take to enable plaque characterization in clinical applications.
Collapse
Affiliation(s)
- Rita Castro
- Department of Nutritional Sciences, Penn State University, PA, 16802, University Park, USA
- Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sean Gullette
- Huck Institutes of The Life Sciences, Penn State University, PA, 16802, University Park, USA
| | - Courtney Whalen
- Department of Nutritional Sciences, Penn State University, PA, 16802, University Park, USA
| | - Floyd J Mattie
- Department of Nutritional Sciences, Penn State University, PA, 16802, University Park, USA
| | - Ximing Ge
- Department of Nutritional Sciences, Penn State University, PA, 16802, University Park, USA
| | - A Catharine Ross
- Department of Nutritional Sciences, Penn State University, PA, 16802, University Park, USA
| | - Thomas Neuberger
- Huck Institutes of The Life Sciences, Penn State University, PA, 16802, University Park, USA.
- Department of Biomedical Engineering, Penn State University, PA, 16802, University Park, USA.
| |
Collapse
|
5
|
da Silva IV, Gullette S, Florindo C, Huang NK, Neuberger T, Ross AC, Soveral G, Castro R. The Effect of Nutritional Ketosis on Aquaporin Expression in Apolipoprotein E-Deficient Mice: Potential Implications for Energy Homeostasis. Biomedicines 2022; 10:biomedicines10051159. [PMID: 35625895 PMCID: PMC9138310 DOI: 10.3390/biomedicines10051159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Ketogenic diets (KDs) are very low-carbohydrate, very high-fat diets which promote nutritional ketosis and impact energetic metabolism. Aquaporins (AQPs) are transmembrane channels that facilitate water and glycerol transport across cell membranes and are critical players in energy homeostasis. Altered AQP expression or function impacts fat accumulation and related comorbidities, such as the metabolic syndrome. Here, we sought to determine whether nutritional ketosis impacts AQPs expression in the context of an atherogenic model. To do this, we fed ApoE−/− (apolipoprotein E-deficient) mice, a model of human atherosclerosis, a KD (Kcal%: 1/81/18, carbohydrate/fat/protein) or a control diet (Kcal%: 70/11/18, carbohydrate/fat/protein) for 12 weeks. Plasma was collected for biochemical analysis. Upon euthanasia, livers, white adipose tissue (WAT), and brown adipose tissue (BAT) were used for gene expression studies. Mice fed the KD and control diets exhibited similar body weights, despite the profoundly different fat contents in the two diets. Moreover, KD-fed mice developed nutritional ketosis and showed increased expression of thermogenic genes in BAT. Additionally, these mice presented an increase in Aqp9 transcripts in BAT, but not in WAT, which suggests the participation of Aqp9 in the influx of excess plasma glycerol to fuel thermogenesis, while the up-regulation of Aqp7 in the liver suggests the involvement of this aquaporin in glycerol influx into hepatocytes. The relationship between nutritional ketosis, energy homeostasis, and the AQP network demands further investigation.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Sean Gullette
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16802, USA; (S.G.); (T.N.)
| | - Cristina Florindo
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Neil K. Huang
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16802, USA; (S.G.); (T.N.)
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Correspondence: (G.S.); (R.C.)
| | - Rita Castro
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
- Correspondence: (G.S.); (R.C.)
| |
Collapse
|
6
|
Castro R, Whalen CA, Gullette S, Mattie FJ, Florindo C, Heil SG, Huang NK, Neuberger T, Ross AC. A Hypomethylating Ketogenic Diet in Apolipoprotein E-Deficient Mice: A Pilot Study on Vascular Effects and Specific Epigenetic Changes. Nutrients 2021; 13:nu13103576. [PMID: 34684577 PMCID: PMC8537671 DOI: 10.3390/nu13103576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/20/2022] Open
Abstract
Hyperhomocysteneinemia (HHcy) is common in the general population and is a risk factor for atherosclerosis by mechanisms that are still elusive. A hypomethylated status of epigenetically relevant targets may contribute to the vascular toxicity associated with HHcy. Ketogenic diets (KD) are diets with a severely restricted amount of carbohydrates that are being widely used, mainly for weight-loss purposes. However, studies associating nutritional ketosis and HHcy are lacking. This pilot study investigates the effects of mild HHcy induced by nutritional manipulation of the methionine metabolism in the absence of dietary carbohydrates on disease progression and specific epigenetic changes in the apolipoprotein-E deficient (apoE-/-) mouse model. ApoE-/- mice were either fed a KD, a diet with the same macronutrient composition but low in methyl donors (low methyl KD, LMKD), or control diet. After 4, 8 or 12 weeks plasma was collected for the quantification of: (1) nutritional ketosis, (i.e., the ketone body beta-hydroxybutyrate using a colorimetric assay); (2) homocysteine by HPLC; (3) the methylating potential S-adenosylmethionine to S-adenosylhomocysteine ratio (AdoHcy/AdoMet) by LC-MS/MS; and (4) the inflammatory cytokine monocyte chemoattractant protein 1 (MCP1) by ELISA. After 12 weeks, aortas were collected to assess: (1) the vascular AdoHcy/AdoMet ratio; (2) the volume of atherosclerotic lesions by high-field magnetic resonance imaging (14T-MRI); and (3) the content of specific epigenetic tags (H3K27me3 and H3K27ac) by immunofluorescence. The results confirmed the presence of nutritional ketosis in KD and LMKD mice but not in the control mice. As expected, mild HHcy was only detected in the LMKD-fed mice. Significantly decreased MCP1 plasma levels and plaque burden were observed in control mice versus the other two groups, together with an increased content of one of the investigated epigenetic tags (H3K27me3) but not of the other (H3K27ac). Moreover, we are unable to detect any significant differences at the p < 0.05 level for MCP1 plasma levels, vascular AdoMet:AdoHcy ratio levels, plaque burden, and specific epigenetic content between the latter two groups. Nevertheless, the systemic methylating index was significantly decreased in LMKD mice versus the other two groups, reinforcing the possibility that the levels of accumulated homocysteine were insufficient to affect vascular transmethylation reactions. Further studies addressing nutritional ketosis in the presence of mild HHcy should use a higher number of animals and are warranted to confirm these preliminary observations.
Collapse
Affiliation(s)
- Rita Castro
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence: ; Tel.: +1-814-865-2938
| | - Courtney A. Whalen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Sean Gullette
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (S.G.); (T.N.)
| | - Floyd J. Mattie
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Cristina Florindo
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Sandra G. Heil
- Medical Center Rotterdam, Department of Clinical Chemistry, Erasmus MC University, 3015 GD Rotterdam, The Netherlands;
| | - Neil K. Huang
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
- Jean Mayer USDA Human Nutrition Research Center on Aging, Cardiovascular Nutrition Laboratory, Tufts University, Boston, MA 02111, USA
| | - Thomas Neuberger
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (S.G.); (T.N.)
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| |
Collapse
|