1
|
Szoszkiewicz A, Szczepanek M, Bukowska-Olech E, Sowińska-Seidler A, Socha M, Jamsheer A. Fibrodysplasia ossificans progressiva: genetic and clinical characterization in a cohort of Polish patients and review of potential therapies. J Appl Genet 2025:10.1007/s13353-025-00966-4. [PMID: 40220125 DOI: 10.1007/s13353-025-00966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 04/14/2025]
Abstract
Fibrodysplasia ossificans progressiva (FOP; OMIM #135100) is a rare genetic disorder characterized by congenital malformation of the great toes and progressive heterotopic ossification of soft tissues. To date, the disease has been linked to 15 pathogenic variants in the ACVR1 gene, which encodes a type I receptor for bone morphogenetic proteins. Most patients with FOP carry a recurrent single-nucleotide substitution (c.617G>A; p.Arg206His) in the ACVR1 gene. The genotype-phenotype correlations for atypical pathogenic variants of ACVR1 are poorly understood. In this study, we report the largest population of Polish patients affected by FOP and analyze their phenotypes and genotypes. We screened the whole ACVR1 coding sequence of 16 patients affected by FOP to confirm the presence of pathogenic variants. Thirteen individuals carried the classic pathogenic variant (p.Arg206His) and had a classic or FOP-plus phenotype. In agreement with the findings of previous studies, one patient with a p.Gly356Asp pathogenic variant had a variant FOP phenotype. We point to an unusual phenomenon in two patients who carried atypical pathogenic variants (p.Gly356Asp and p.Arg258Ser) and displayed a classic FOP phenotype. Our study extends the understanding of FOP's genotype-phenotype correlation, suggesting that classic FOP phenotypes are associated with non-classic pathogenic variants. We also summarize the recent advances in drug development for this condition. Therefore, the study may be valuable for clinicians consulting patients with FOP.
Collapse
Affiliation(s)
- Anna Szoszkiewicz
- Poznan University of Medical Sciences, Department of Medical Genetics, Rokietnicka 8, Poznan, Poland.
- Poznan University of Medical Sciences, Doctoral School, Department of Medical Genetics, Poznan, Poland.
| | - Małgorzata Szczepanek
- University of Rzeszow, Faculty of Medicine, Rzeszów, Poland
- 2nd Department of Pediatrics, Endocrinology and Diabetology, Clinical Provincial Hospital No. 2, Rzeszów, Poland
| | - Ewelina Bukowska-Olech
- Poznan University of Medical Sciences, Department of Laboratory Diagnostics, Poznan, Poland
| | - Anna Sowińska-Seidler
- Poznan University of Medical Sciences, Department of Medical Genetics, Rokietnicka 8, Poznan, Poland
| | - Magdalena Socha
- Adam Mickiewicz University, Institute of Molecular Biology and Biotechnology, Poznan, Poland
| | - Aleksander Jamsheer
- Poznan University of Medical Sciences, Department of Medical Genetics, Rokietnicka 8, Poznan, Poland.
- Diagnostyka GENESIS, Dąbrowskiego 77A, 60 - 529, Poznan, Poland.
| |
Collapse
|
2
|
Hsiao EC, Pacifici M. Palovarotene (Sohonos), a synthetic retinoid for reducing new heterotopic ossification in fibrodysplasia ossificans progressiva: history, present, and future. JBMR Plus 2025; 9:ziae147. [PMID: 39677926 PMCID: PMC11646086 DOI: 10.1093/jbmrpl/ziae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/15/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Retinoids are metabolic derivatives of vitamin A and play crucial roles in the regulation of various tissues and organs during prenatal and postnatal development. Active retinoids, like all-trans-retinoic acid, are synthesized in the cytoplasm and subsequently interact with nuclear retinoic acid receptors (RARα, RARβ, and RARγ) to enhance transcription of specific genes. In the absence of retinoids, RARs can still bind to response elements of target genes but repress their transcription. Chondrogenic cell differentiation and cartilage maturation in the growth plate require the absence of retinoid signaling and transcriptional repression by unliganded RARs. This led to the hypothesis that synthetic retinoid agonists may be pharmacological agents to inhibit those cellular processes and counter the excessive formation of cartilage and bone in conditions like heterotopic ossification (HO). HO can be instigated by diverse culprits including trauma, invasive surgeries, inflammatory disorders, or genetic conditions. One such genetic disease is fibrodysplasia ossificans progressiva (FOP), a rare disorder driven by activating mutations in the ACVR1 gene. Patients with FOP have severe and progressive HO formation in soft tissues, leading to extensive permanent loss of mobility and increased mortality. Synthetic retinoid agonists selective for RARα or RARγ showed efficacy against injury-induced and genetic HO in mouse models. The RARγ agonists showed the highest effectiveness, with palovarotene being selected for clinical trials in patients with FOP. Post hoc analyses of phase II and phase III clinical trials showed that palovarotene has significant disease-modifying effects for FOP, but with significant risks such as premature growth plate closure in some younger subjects. This review provides an overview of retinoid and RAR roles in skeletal development and discusses the identification of palovarotene as a potential FOP therapy, the clinical data supporting its regulatory approval in some countries, and the potential applications of this drug for other relevant disorders besides FOP.
Collapse
Affiliation(s)
- Edward C Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine; the Program in Craniofacial Biology; The Institute for Human Genetics; and The Ely and Edythe Broad Institute for Regeneration Medicine, University of California—San Francisco, San Francisco, CA 94143, United States
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| |
Collapse
|
3
|
Mishima K, Kitoh H, Shiraki A, Sawamura K, Kamiya Y, Matsushita M, Imagama S. Generalized Epileptic Seizures in Fibrodysplasia Ossificans Progressiva Harboring a Recurrent Heterozygous Variant of the ACVR1 Gene (R206H). Case Rep Genet 2024; 2024:9569275. [PMID: 39719967 PMCID: PMC11668544 DOI: 10.1155/crig/9569275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/03/2024] [Indexed: 12/26/2024] Open
Abstract
Background: Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare disorder caused by heterozygous ACVR1 pathogenic variants and is characterized by both progressive heterotopic ossification of the soft tissues and congenital malformations of the great toe. In addition to pathological skeletal metamorphosis, patients with FOP experience diverse neurological symptoms such as chronic pain and involuntary movements; however, little is known about the association between FOP and epileptic seizures. Methods: We report the case of a young boy with FOP who sustained multiple major fractures due to epileptic loss of consciousness. Results: Based on generalized electroencephalographic abnormalities and the presence of myoclonic movements, the patient was diagnosed with juvenile myoclonic epilepsy. The absence of seizures was well-controlled with valproic acid, whereas occasional abrupt myoclonic movements of the hands and feet persisted. Conclusion: This case expands our understanding of the phenotypic diversity of FOP and the functional versatility of ACVR1-mediated bone morphogenetic protein (BMP) signaling.
Collapse
Affiliation(s)
- Kenichi Mishima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Hiroshi Kitoh
- Department of Orthopaedic Surgery, Aichi Children's Health and Medical Center, 7-426 Morioka-cho, Obu 474-8710, Aichi, Japan
| | - Anna Shiraki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Kenta Sawamura
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Yasunari Kamiya
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Masaki Matsushita
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| |
Collapse
|
4
|
Towler OW, Shore EM, Kaplan FS. Molecular Developmental Biology of Fibrodysplasia Ossificans Progressiva: Measuring the Giant by Its Toe. Biomolecules 2024; 14:1009. [PMID: 39199396 PMCID: PMC11353020 DOI: 10.3390/biom14081009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
When a genetic disease is characterized by the abnormal activation of normal molecular pathways and cellular events, it is illuminating to critically examine the places and times of these activities both in health and disease. Therefore, because heterotopic ossification (HO) in fibrodysplasia ossificans progressiva (FOP) is by far the disease's most prominent symptom, attention is also directed toward the pathways and processes of bone formation during skeletal development. FOP is recognizable by effects of the causative mutation on skeletal development even before HO manifests, specifically in the malformation of the great toes. This signature skeletal phenotype is the most highly penetrant, but is only one among several skeletal abnormalities associated with FOP. Patients may present clinically with joint malformation and ankylosis, particularly in the cervical spine and costovertebral joints, as well as characteristic facial features and a litany of less common, non-skeletal symptoms, all stemming from missense mutations in the ACVR1 gene. In the same way that studying the genetic cause of HO advanced our understanding of HO initiation and progression, insight into the roles of ACVR1 signaling during tissue development, particularly in the musculoskeletal system, can be gained from examining altered skeletal development in individuals with FOP. This review will detail what is known about the molecular mechanisms of developmental phenotypes in FOP and the early role of ACVR1 in skeletal patterning and growth, as well as highlight how better understanding these processes may serve to advance patient care, assessments of patient outcomes, and the fields of bone and joint biology.
Collapse
Affiliation(s)
- O. Will Towler
- Division of Plastic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Eileen M. Shore
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederick S. Kaplan
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Juan C, Bancroft AC, Choi JH, Nunez JH, Pagani CA, Lin YS, Hsiao EC, Levi B. Intersections of Fibrodysplasia Ossificans Progressiva and Traumatic Heterotopic Ossification. Biomolecules 2024; 14:349. [PMID: 38540768 PMCID: PMC10968060 DOI: 10.3390/biom14030349] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Heterotopic ossification (HO) is a debilitating pathology where ectopic bone develops in areas of soft tissue. HO can develop as a consequence of traumatic insult or as a result of dysregulated osteogenic signaling, as in the case of the orphan disease fibrodysplasia ossificans progressiva (FOP). Traumatic HO (tHO) formation is mediated by the complex interplay of signaling between progenitor, inflammatory, and nerve cells, among others, making it a challenging process to understand. Research into the pathogenesis of genetically mediated HO (gHO) in FOP has established a pathway involving uninhibited activin-like kinase 2 receptor (ALK2) signaling that leads to downstream osteogenesis. Current methods of diagnosis and treatment lag behind pre-mature HO detection and progressive HO accumulation, resulting in irreversible decreases in range of motion and chronic pain for patients. As such, it is necessary to draw on advancements made in the study of tHO and gHO to better diagnose, comprehend, prevent, and treat both.
Collapse
Affiliation(s)
- Conan Juan
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Alec C. Bancroft
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Ji Hae Choi
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Johanna H. Nunez
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Chase A. Pagani
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Yen-Sheng Lin
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Edward C. Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine, the Institute for Human Genetics, and the Program in Craniofacial Biology, University of California San Francisco Medical Center, San Francisco, CA 94143, USA;
| | - Benjamin Levi
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| |
Collapse
|
6
|
Seefried L, Banholzer D, Fischer R, Grafe I, Hüning I, Morhart R, Oheim R, Semler O, Siggelkow H, Stockklausner C, Hoyer-Kuhn H. [Recommendations for the healthcare of patients with FOP]. ORTHOPADIE (HEIDELBERG, GERMANY) 2023; 52:924-930. [PMID: 37603129 PMCID: PMC10622346 DOI: 10.1007/s00132-023-04425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Fibrodysplasia ossificans progressiva (FOP) is a very rare, severe genetic disorder triggered by a gain-of-function mutation in the ACVR1 gene that codes for the type I bone morphogenetic protein (BMP) receptor ACVR1 (activin A receptor-type 1), also known as ALK2 (activin receptor-like kinase-2). It leads to the onset and progression of heterotopic ossification (HO) in soft and connective tissue. HO is often preceded by episodes of soft tissue swelling or flare-ups. Flare-ups, characteristic of FOP, may be induced by trauma, infection, vaccination, or other medications, as well as surgical procedures or may occur spontaneously. As patients age, they develop severe mobility limitations due to progressive HO formation, including immobility, causing a shortened life expectancy. FOP's first characteristic clinical sign is the congenital malformation of one or both big toes with valgus axis deviation, which is present in almost all patients. To confirm the diagnosis, molecular genetic analysis of the ACVR1 gene is possible. AIM OF THE RECOMMENDATIONS This white paper aims to provide an overview of the necessary prerequisites and conditions for the care of patients with FOP and positively contribute to patients with FOP by improving the overall availability of knowledge. To achieve this, relevant aspects of the care of the very rare disease FOP are presented, from the initial diagnosis to the care in regular care based on the authors' knowledge (German FOP network) and the international FOP Treatment Guidelines. The recommendations presented here are addressed to all actors and decision-makers in the health care system and are also intended to inform patients and the public.
Collapse
Affiliation(s)
- L Seefried
- Osteologie/Klinische Studieneinheit, Universität Würzburg, Brettreichstr. 11, 97074, Würzburg, Deutschland.
| | - D Banholzer
- Sozialpädiatrisches Zentrum, Standort Mitte - Olgahospital, Haus M - Pädiatrie 1, Klinikum Stuttgart, Kriegsbergstr. 60, 70174, Stuttgart, Deutschland
| | - R Fischer
- FOP e. V., c/o Ralf Fischer, Frankfurter Landstr. 11a, 61440, Oberursel, Deutschland
| | - I Grafe
- Medizinische Klinik und Poliklinik III, Bereich Endokrinologie und Stoffwechsel, Diabetes, Knochenerkrankungen, UniversitätsCentrum für Gesundes Altern, Universitätsklinikum Carl Gustav Carus der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
- Zentrum für Metabolisch-Immunologische Erkrankungen und Therapietechnologien Sachsen (MITS), Technische Universität Dresden, Dresden, Deutschland
| | - I Hüning
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | - R Morhart
- , Triftstr. 12, 82467, Garmisch-Partenkirchen, Deutschland
| | - R Oheim
- Institut für Osteologie und Biomechanik, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland
| | - O Semler
- Medizinische Fakultät und Uniklinik Köln, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universität zu Köln, Köln, Deutschland
- Medizinische Fakultät und Uniklinik Köln, Zentrum für seltene Erkrankungen, Universität zu Köln, Köln, Deutschland
| | - H Siggelkow
- Zentrum für Endokrinologie, Osteologie, Rheumatologie, Nuklearmedizin und Humangenetik, MVZ ENDOKRINOLOGIKUM Göttingen, 37075, Göttingen, Deutschland
- Klinik für Gastroenterologie, gastrointestinale Onkologie und Endokrinologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
| | - C Stockklausner
- Abteilung Kinder & Jugendmedizin, Klinikum Garmisch-Partenkirchen, Auenstr. 6, 82467, Garmisch-Partenkirchen, Deutschland
| | - H Hoyer-Kuhn
- Medizinische Fakultät und Uniklinik Köln, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universität zu Köln, Köln, Deutschland.
| |
Collapse
|
7
|
Yu X, Ton AN, Niu Z, Morales BM, Chen J, Braz J, Lai MH, Barruet E, Liu H, Cheung K, Ali S, Chan T, Bigay K, Ho J, Nikolli I, Hansberry S, Wentworth K, Kriegstein A, Basbaum A, Hsiao EC. ACVR1-activating mutation causes neuropathic pain and sensory neuron hyperexcitability in humans. Pain 2023; 164:43-58. [PMID: 35442931 PMCID: PMC9582048 DOI: 10.1097/j.pain.0000000000002656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/01/2022] [Accepted: 04/08/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Altered bone morphogenetic protein (BMP) signaling is associated with many musculoskeletal diseases. However, it remains unknown whether BMP dysfunction has direct contribution to debilitating pain reported in many of these disorders. Here, we identified a novel neuropathic pain phenotype in patients with fibrodysplasia ossificans progressiva (FOP), a rare autosomal-dominant musculoskeletal disorder characterized by progressive heterotopic ossification. Ninety-seven percent of these patients carry an R206H gain-of-function point mutation in the BMP type I receptor ACVR1 (ACVR1 R206H ), which causes neofunction to Activin A and constitutively activates signaling through phosphorylated SMAD1/5/8. Although patients with FOP can harbor pathological lesions in the peripheral and central nervous system, their etiology and clinical impact are unclear. Quantitative sensory testing of patients with FOP revealed significant heat and mechanical pain hypersensitivity. Although there was no major effect of ACVR1 R206H on differentiation and maturation of nociceptive sensory neurons (iSNs) derived from FOP induced pluripotent stem cells, both intracellular and extracellular electrophysiology analyses of the ACVR1 R206H iSNs displayed ACVR1-dependent hyperexcitability, a hallmark of neuropathic pain. Consistent with this phenotype, we recorded enhanced responses of ACVR1 R206H iSNs to TRPV1 and TRPA1 agonists. Thus, activated ACVR1 signaling can modulate pain processing in humans and may represent a potential target for pain management in FOP and related BMP pathway diseases.
Collapse
Affiliation(s)
- Xiaobing Yu
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States
| | - Amy N. Ton
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| | - Zejun Niu
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Blanca M. Morales
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| | - Jiadong Chen
- Department of Neurology, University of California, San Francisco, CA, United States. Dr. Chen is now with the Department of Neurology of Second Affiliated Hospital, Centre for Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Joao Braz
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| | - Michael H. Lai
- J. David Gladstone Institutes, San Francisco, CA, United States
| | - Emilie Barruet
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| | - Hongju Liu
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States
- Department of Anesthesiology, Peking Union Medical College Hospital, Beijing, China
| | - Kin Cheung
- BioSAS Consulting, Inc, Wellesley, MA, United States
| | - Syed Ali
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States
| | - Tea Chan
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| | - Katherine Bigay
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| | - Jennifer Ho
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| | - Ina Nikolli
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| | - Steven Hansberry
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
- California Institute of Regenerative Medicine Bridges to Stem Cell Research Program, San Francisco State University, San Francisco, CA, United States
| | - Kelly Wentworth
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| | - Arnold Kriegstein
- Department of Neurology, University of California, San Francisco, CA, United States. Dr. Chen is now with the Department of Neurology of Second Affiliated Hospital, Centre for Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Allan Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| | - Edward C. Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine, The Institute for Human Genetics, and the Program in Craniofacial Biology, University of California, San Francisco, CA, United States
| |
Collapse
|
8
|
Kargbo R. ALK Inhibitors for Treating Cancer, Blood, and Kidney Diseases. ACS Med Chem Lett 2022; 13:1539-1541. [PMID: 36267131 PMCID: PMC9578028 DOI: 10.1021/acsmedchemlett.2c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Indexed: 11/30/2022] Open
Abstract
Cancers that traditionally have been resistant to apoptosis via chemical- or radiation-based therapies may respond when the treatments are combined with ALK-5 inhibition. Disclosures in this Patent Highlight provide inhibitors of activin-receptor-like kinases such as ALK-5, compositions and methods for increasing red blood cell or hemoglobin levels, and activin antagonists to treat, prevent, or reduce the progression rate or severity of kidney disease.
Collapse
|
9
|
Ravazzolo R. Editorial of Special Issue “Fibrodysplasia Ossificans Progressiva: Studies on Disease Mechanism towards Novel Therapeutic Approaches”. Biomedicines 2022; 10:biomedicines10010140. [PMID: 35052819 PMCID: PMC8773764 DOI: 10.3390/biomedicines10010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
The Special Issue on “Fibrodysplasia Ossificans Progressiva: Studies on Disease Mechanism towards Novel Therapeutic Approaches” has published interesting and useful review articles and original experimental articles on fibrodysplasia ossificans progressiva (FOP), a very rare genetic disorder for which much effort is being devoted to search for a cure. In this editorial, I briefly cite the essential content of all the published articles.
Collapse
Affiliation(s)
- Roberto Ravazzolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DiNOGMI), University of Genova, 16100 Genova, Italy
| |
Collapse
|
10
|
Towler OW, Shore EM. BMP signaling and skeletal development in fibrodysplasia ossificans progressiva (FOP). Dev Dyn 2022; 251:164-177. [PMID: 34133058 PMCID: PMC9068236 DOI: 10.1002/dvdy.387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare genetic disease caused by increased BMP pathway signaling due to mutation of ACVR1, a bone morphogenetic protein (BMP) type 1 receptor. The primary clinical manifestation of FOP is extra-skeletal bone formation (heterotopic ossification) within soft connective tissues. However, the underlying ACVR1 mutation additionally alters skeletal bone development and nearly all people born with FOP have bilateral malformation of the great toes as well as other skeletal malformations at diverse anatomic sites. The specific mechanisms through which ACVR1 mutations and altered BMP pathway signaling in FOP influence skeletal bone formation during development remain to be elucidated; however, recent investigations are providing a clearer understanding of the molecular and developmental processes associated with ACVR1-regulated skeletal formation.
Collapse
Affiliation(s)
- Oscar Will Towler
- The Center for Research in FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eileen M. Shore
- The Center for Research in FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|