1
|
Wańczura P, Mytych W, Bartusik-Aebisher D, Leksa D, Truszkiewicz A, Aebisher D. Visualization of Atherosclerotic Plaques Paired with Joheksol 350 (Omnipaque). Biomedicines 2025; 13:399. [PMID: 40002812 PMCID: PMC11853480 DOI: 10.3390/biomedicines13020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cardiovascular disease is one of the leading causes of death around the globe. Atherosclerosis, a chronic inflammatory blood vessel disease that takes years to develop, is its primary cause. Instability and further plaque buildup are caused by chronic inflammation, which creates the conditions for possible rupture. The visualization of arterial lesions in situ can enhance understanding of atherosclerosis progression and potentially improve experimental therapies. Conventional histology methods for assessing atherosclerotic lesions are robust but are destructive and may prevent further tissue analysis. Objectives: The objective of the current study was to evaluate a novel, nondestructive method for the visualization and characterization of atherosclerotic lesions. Methods and Results: Thus, we tested the hypothesis that MRI paired with an iodine-based radiopaque stain would effectively characterize atherosclerotic plaques in a manner comparable to routine histology while maintaining sample integrity and providing whole-volume data.
Collapse
Affiliation(s)
- Piotr Wańczura
- Department of Cardiology, Medical College of Sciences, The Rzeszów University, 35-310 Rzeszów, Poland
| | - Wiktoria Mytych
- English Division Science Club, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Dawid Leksa
- Rzeszów Center for Vascular and Endovascular Surgery, 35-310 Rzeszów, Poland;
| | - Adrian Truszkiewicz
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
2
|
Ye L, Chang CC, Li Q, Tintut Y, Hsu JJ. Advanced Imaging Techniques for Atherosclerosis and Cardiovascular Calcification in Animal Models. J Cardiovasc Dev Dis 2024; 11:410. [PMID: 39728300 DOI: 10.3390/jcdd11120410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
The detection and assessment of atherosclerosis and cardiovascular calcification can inform risk stratification and therapies to reduce cardiovascular morbidity and mortality. In this review, we provide an overview of current and emerging imaging techniques for assessing atherosclerosis and cardiovascular calcification in animal models. Traditional imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), offer non-invasive approaches of visualizing atherosclerotic calcification in vivo; integration of these techniques with positron emission tomography (PET) imaging adds molecular imaging capabilities, such as detection of metabolically active microcalcifications with 18F-sodium fluoride. Photoacoustic imaging provides high contrast that enables in vivo evaluation of plaque composition, yet this method is limited by optical penetration depth. Light-sheet fluorescence microscopy provides high-resolution, three-dimensional imaging of cardiovascular structures and has been used for ex vivo assessment of atherosclerotic calcification, but its limited tissue penetration and requisite complex sample preparation preclude its use in vivo to evaluate cardiac tissue. Overall, with these evolving imaging tools, our understanding of cardiovascular calcification development in animal models is improving, and the combination of traditional imaging techniques with emerging molecular imaging modalities will enhance our ability to investigate therapeutic strategies for atherosclerotic calcification.
Collapse
Affiliation(s)
- Lifang Ye
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
- Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA
| | - Chih-Chiang Chang
- Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Qian Li
- Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA
| | - Yin Tintut
- Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
- Department of Orthopedic Surgery, University of California, Los Angeles, CA 90404, USA
| | - Jeffrey J Hsu
- Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Department of Medicine, Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| |
Collapse
|
3
|
Proaño-Bernal L, Gilabert-García A, Sharma-Sharma S, Mora-Barrera CM, Singer-De-la-Garza J, Beristain-de-la-Rosa PY, Basile-Alvarez MR, Guerra EC, Bermudez-Gonzalez JL, Luna-Alcala S, Espinola-Zavaleta N, Alexanderson-Rosas E. Positron emission tomography and its role in the assessment of vulnerable plaques in comparison to other imaging modalities. Front Med (Lausanne) 2024; 10:1293848. [PMID: 38425695 PMCID: PMC10902136 DOI: 10.3389/fmed.2023.1293848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 03/02/2024] Open
Abstract
The diagnosis and management of vulnerable plaques are topics of high interest in the cardiovascular field. Although imaging techniques like computed tomography angiography (MCTA) and ultrasonography (USG) can structurally evaluate atherosclerotic plaques, they are limited in examining internal cellular processes. Positron emission tomography (PET) molecular imaging, on the other hand, can highlight these cellular processes, including inflammation, angiogenesis, and lipid oxidation. Magnetic resonance imaging (MRI) is also a valuable non-invasive imaging technique that can provide detailed anatomical and functional information on the cardiovascular system. In this review, we compare the advantages and drawbacks of MCTA, USG and MRI imaging techniques with PET molecular imaging in evaluating vulnerable plaques. PET imaging allows physicians to measure different pathophysiological events within the plaque using intravenous radiotracers, of which 18F-fluorodeoxyglucose (18F-FDG) is the most validated one. By using 18F-FDG, physicians can understand the formation of the plaque, assess the accumulation of macrophages, and predict major cardiovascular events. However, some limitations exist in using 18F-FDG, including myocardial uptake and low sensitivity in imaging coronary arteries. We also mention other radiotracers that can help in evaluating vulnerable plaques, including 18F-NaF. Although PET imaging is still challenging, it has shown promise in evaluating vulnerable plaques and could be used to intervene in high-risk patients before major cardiovascular events occur.
Collapse
Affiliation(s)
- Leonardo Proaño-Bernal
- Department of Nuclear Cardiology, National Institute of Cardiology Ignacio Chavez, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Ana Gilabert-García
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | | | | | | | | | - Enrique C. Guerra
- Department of Nuclear Cardiology, National Institute of Cardiology Ignacio Chavez, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jorge Luis Bermudez-Gonzalez
- Department of Internal Medicine, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Santiago Luna-Alcala
- Department of Nuclear Cardiology, National Institute of Cardiology Ignacio Chavez, Mexico City, Mexico
| | - Nilda Espinola-Zavaleta
- Department of Nuclear Cardiology, National Institute of Cardiology Ignacio Chavez, Mexico City, Mexico
| | - Erick Alexanderson-Rosas
- Department of Nuclear Cardiology, National Institute of Cardiology Ignacio Chavez, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
4
|
Cau R, Gupta A, Kooi ME, Saba L. Pearls and Pitfalls of Carotid Artery Imaging: Ultrasound, Computed Tomography Angiography, and MR Imaging. Radiol Clin North Am 2023; 61:405-413. [PMID: 36931758 DOI: 10.1016/j.rcl.2023.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Stroke represents a major cause of morbidity and mortality worldwide with carotid atherosclerosis responsible for a large proportion of ischemic strokes. Given the high burden of the disease , early diagnosis and optimal secondary prevention are essential elements in clinical practice. For a long time, the degree of stenosis had been considered the parameter to judge the severity of carotid atherosclerosis. Over the last 30 years, literature has shifted attention from stenosis to structural characteristics of atherosclerotic lesion, eventually leading to the "vulnerable plaque" model. These "vulnerable plaques" frequently demonstrate high-risk imaging features that can be assessed by various non-invasive imaging modalities.
Collapse
Affiliation(s)
- Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554, Monserrato, Cagliari 09045, Italy
| | - Ajay Gupta
- Department of Radiology Weill Cornell Medical College, New York, NY, USA
| | - Marianne Eline Kooi
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554, Monserrato, Cagliari 09045, Italy.
| |
Collapse
|
5
|
Karageorgos GM, Kemper P, Lee C, Weber R, Kwon N, Meshram N, Mobadersany N, Grondin J, Marshall RS, Miller EC, Konofagou EE. Adaptive Wall Shear Stress Imaging in Phantoms, Simulations and In Vivo. IEEE Trans Biomed Eng 2023; 70:154-165. [PMID: 35776824 PMCID: PMC10103592 DOI: 10.1109/tbme.2022.3186854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
WSS measurement is challenging since it requires sensitive flow measurements at a distance close to the wall. The aim of this study is to develop an ultrasound imaging technique which combines vector flow imaging with an unsupervised data clustering approach that automatically detects the region close to the wall with optimally linear flow profile, to provide direct and robust WSS estimation. The proposed technique was evaluated in phantoms, mimicking normal and atherosclerotic vessels, and spatially registered Fluid Structure Interaction (FSI) simulations. A relative error of 6.7% and 19.8% was obtained for peak systolic (WSSPS) and end diastolic (WSSED) WSS in the straight phantom, while in the stenotic phantom, a good similarity was found between measured and simulated WSS distribution, with a correlation coefficient, R, of 0.89 and 0.85 for WSSPS and WSSED, respectively. Moreover, the feasibility of the technique to detect pre-clinical atherosclerosis was tested in an atherosclerotic swine model. Six swines were fed atherogenic diet, while their left carotid artery was ligated in order to disturb flow patterns. Ligated arterial segments that were exposed to low WSSPS and WSS characterized by high frequency oscillations at baseline, developed either moderately or highly stenotic plaques (p < 0.05). Finally, feasibility of the technique was demonstrated in normal and atherosclerotic human subjects. Atherosclerotic carotid arteries with low stenosis had lower WSSPS as compared to control subjects (p < 0.01), while in one subject with high stenosis, elevated WSS was found on an arterial segment, which coincided with plaque rupture site, as determined through histological examination.
Collapse
|
6
|
Li X, Wu M, Li J, Guo Q, Zhao Y, Zhang X. Advanced targeted nanomedicines for vulnerable atherosclerosis plaque imaging and their potential clinical implications. Front Pharmacol 2022; 13:906512. [PMID: 36313319 PMCID: PMC9606597 DOI: 10.3389/fphar.2022.906512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis plaques caused by cerebrovascular and coronary artery disease have been the leading cause of death and morbidity worldwide. Precise assessment of the degree of atherosclerotic plaque is critical for predicting the risk of atherosclerosis plaques and monitoring postinterventional outcomes. However, traditional imaging techniques to predict cardiocerebrovascular events mainly depend on quantifying the percentage reduction in luminal diameter, which would immensely underestimate non-stenotic high-risk plaque. Identifying the degree of atherosclerosis plaques still remains highly limited. vNanomedicine-based imaging techniques present unique advantages over conventional techniques due to the superior properties intrinsic to nanoscope, which possess enormous potential for characterization and detection of the features of atherosclerosis plaque vulnerability. Here, we review recent advancements in the development of targeted nanomedicine-based approaches and their applications to atherosclerosis plaque imaging and risk stratification. Finally, the challenges and opportunities regarding the future development and clinical translation of the targeted nanomedicine in related fields are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuening Zhang
- Department of Radiology, Tianjin Medical University Second Hospital, Tianjin, China
| |
Collapse
|
7
|
Weng ST, Lai QL, Cai MT, Wang JJ, Zhuang LY, Cheng L, Mo YJ, Liu L, Zhang YX, Qiao S. Detecting vulnerable carotid plaque and its component characteristics: Progress in related imaging techniques. Front Neurol 2022; 13:982147. [PMID: 36188371 PMCID: PMC9515377 DOI: 10.3389/fneur.2022.982147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Carotid atherosclerotic plaque rupture and thrombosis are independent risk factors for acute ischemic cerebrovascular disease. Timely identification of vulnerable plaque can help prevent stroke and provide evidence for clinical treatment. Advanced invasive and non-invasive imaging modalities such as computed tomography, magnetic resonance imaging, intravascular ultrasound, optical coherence tomography, and near-infrared spectroscopy can be employed to image and classify carotid atherosclerotic plaques to provide clinically relevant predictors used for patient risk stratification. This study compares existing clinical imaging methods, and the advantages and limitations of different imaging techniques for identifying vulnerable carotid plaque are reviewed to effectively prevent and treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Shi-Ting Weng
- The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Qi-Lun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Meng-Ting Cai
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun-Jun Wang
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Li-Ying Zhuang
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Lin Cheng
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Ye-Jia Mo
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Lu Liu
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Yin-Xi Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Yin-Xi Zhang
| | - Song Qiao
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
- Song Qiao
| |
Collapse
|
8
|
2D Projection Maps of WSS and OSI Reveal Distinct Spatiotemporal Changes in Hemodynamics in the Murine Aorta during Ageing and Atherosclerosis. Biomedicines 2021; 9:biomedicines9121856. [PMID: 34944672 PMCID: PMC8698968 DOI: 10.3390/biomedicines9121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Growth, ageing and atherosclerotic plaque development alter the biomechanical forces acting on the vessel wall. However, monitoring the detailed local changes in wall shear stress (WSS) at distinct sites of the murine aortic arch over time has been challenging. Here, we studied the temporal and spatial changes in flow, WSS, oscillatory shear index (OSI) and elastic properties of healthy wildtype (WT, n = 5) and atherosclerotic apolipoprotein E-deficient (Apoe-/-, n = 6) mice during ageing and atherosclerosis using high-resolution 4D flow magnetic resonance imaging (MRI). Spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated, allowing the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and local correlations between WSS, pulse wave velocity (PWV), plaque and vessel wall characteristics. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe-/- mice, and we identified the circumferential WSS as potential marker of plaque size and composition in advanced atherosclerosis and the radial strain as a potential marker for vascular elasticity. Two-dimensional (2D) projection maps of WSS and OSI, including statistical analysis provide a powerful tool to monitor local aortic hemodynamics during ageing and atherosclerosis. The correlation of spatially resolved hemodynamics and plaque characteristics could significantly improve our understanding of the impact of hemodynamics on atherosclerosis, which may be key to understand plaque progression towards vulnerability.
Collapse
|