1
|
Paranitharan N, Kataria S, Arumugam VA, Hsieh HL, Muthukrishnan S, Velayuthaprabhu S. Integrin α1 upregulation by TF:FVIIa complex promotes cervical cancer migration through PAR2-dependent MEK1/2 activation. Biochem Biophys Res Commun 2025; 742:151151. [PMID: 39657349 DOI: 10.1016/j.bbrc.2024.151151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Tissue factor (TF) and protease-activated receptor 2 (PAR2) have been associated with the progression of cancer, while integrins are essential for the adhesion and migration of cancer cells. This study aimed to explore the cross-talk between the TF:FVIIa complex, PAR2 signaling, and the expression of integrin α1 in cervical cancer cells. Utilizing data from The Cancer Genome Atlas (TCGA), the research examined the relationship between the TF and PAR2 genes and the integrin α1 gene (ITGA1) in reproductive cancers, revealing a positive correlation between integrin α1 expression and both TF and PAR2 genes. Analyses through Western blotting and RT-PCR demonstrated that TF:FVIIa complex transactivates PAR2, which significantly increases the phosphorylation of MEK1/2 and subsequently elevates integrin α1 expression. Inhibition of either PAR2 or MEK1/2 resulted in a decrease in the FVIIa-induced increase in integrin α1 expression. Additionally, cell migration studies indicated that elevated expression of integrin α1, mediated by the TF:FVIIa/PAR2 pathway, was linked to enhanced cell migration, which could be inhibited by blocking integrin α1. This investigation uncovers a novel signaling pathway in HeLa cells, highlighting the significance of the TF:FVIIa:PAR2 axis in modulating integrins that are vital for cancer progression, thereby offering insights for potential targeted therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
| | - Shivangi Kataria
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India.
| | - Hsi-Lung Hsieh
- Research Center for Chinese Herbal Medicine, Department of Nursing, Division of Basic Medical Sciences, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, And Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | |
Collapse
|
2
|
Jia Y, Wu Q, Yang Z, Sun R, Zhang K, Guo X, Xu R, Guo Y. Mechanisms of myocardial toxicity of antitumor drugs and potential therapeutic strategies: A review of the literature. Curr Probl Cardiol 2024; 49:102782. [PMID: 39134104 DOI: 10.1016/j.cpcardiol.2024.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
With the successive development of chemotherapy drugs, good results have been achieved in clinical application. However, myocardial toxicity is the biggest challenge. Anthracyclines, immune checkpoint inhibitors, and platinum drugs are widely used. Targeted drug delivery, nanomaterials and dynamic imaging evaluation are all emerging research directions. This article reviews the recent literature on the use of targeted nanodrug delivery and imaging techniques to evaluate the myocardial toxicity of antineoplastic drugs, and discusses the potential mechanisms.
Collapse
Affiliation(s)
- Yang Jia
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Qihong Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Zhigang Yang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu 610041, China
| | - Ran Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Kun Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Xia Guo
- Department of Hematology, West China Second University Hospital, Sichuan University; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Rong Xu
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China.
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Babaei Z, Amani M, Minaiyan M, Ghorbanhosseini SS, Aghaei M. α2β1 Integrin specific inhibitor BTT-3033 promotes paclitaxel-induced apoptosis in human ovarian cancer cells. Res Pharm Sci 2024; 19:549-560. [PMID: 39691300 PMCID: PMC11648348 DOI: 10.4103/rps.rps_245_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/14/2024] [Accepted: 08/31/2024] [Indexed: 12/19/2024] Open
Abstract
Background and purpose The new plan of using molecular targeted agents in combination with cytotoxic drugs may represent a promising strategy to increase the efficacy of chemotherapy. Hence, we examined whether α2β1 integrin-specific inhibitor, BTT-3033, could modulate the susceptibility of OVCAR3 and SKOV3 ovarian cancer cells to paclitaxel (PTX). Experimental approach Ovarian cancer cell lines were treated with BTT-3033 and different concentrations of PTX. To determine the mechanisms involved in the PTX/BTT-3033 combination-induced cell death, cell viability, apoptosis, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and caspase-3 activity were evaluated. Findings/Results Both BTT-3033 (≥ 1 μM) and PTX (≥ 0.01 μM) suppressed the proliferation of OVCAR3 and SKOV3 cells in a concentration-related manner. Pretreatment with BTT-3033 (1 μM), followed by PTX-induced synergistic antiproliferative effects, decreased the IC50 values of PTX from 0.45 to 0.03 μM in OVCAR3 and 0.35 to 0.02 μM in SKOV3 cells. All of the coefficients of drug interaction for various PTX and BTT-3033 combinations were found to be less than 1. Moreover, PTX/BTT-3033 combination induced more apoptotic cells (from 4.2% to 87.0% in OVCAR3 and 2.4% to 88.5% in SKOV3) than PTX alone. Combination therapy also decreased MMP and increased the caspase-3 activity. Additionally, we found that the PTX/BTT-3033 combination enhanced ROS production in OVCAR3 and SKOV3 cells. Conclusion and implications BTT-3033 has demonstrated the ability to enhance the susceptibility of ovarian cancer cells to PTX by inducing MMP loss, ROS production, and mitochondrial apoptosis, therefore this combination therapy might represent a promising strategy for ovarian cancer treatment.
Collapse
Affiliation(s)
- Zeinab Babaei
- Department of Clinical Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahdi Amani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Pharmaceutical Sciences Research Centre, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Chulkova SV, Sholokhova EN, Poddubnaya IV, Gladilina IA, Egorova AV, Stilidi IS. [Expression of transferrin receptor 1 and β1-integrins correlates with estrogen receptor status and immune infiltration in breast cancer]. Arkh Patol 2024; 86:23-30. [PMID: 39073538 DOI: 10.17116/patol20248604123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cancer cells can aberrantly express various markers, including transferrin receptor 1 (CD71) and β1-integrin molecules. Their role in invasion, migration and metastasis has been demonstrated. Determination of their expression in breast cancer (BC) may be an important point to characterize the clinical course of the tumor and prognosis of the disease. OBJECTIVE To study of transferrin receptor 1 (CD71) expression by primary breast cancer cells in correlation with tumor cell phenotype. MATERIAL AND METHODS Determination of BC phenotype: immunohistochemical staining method (immunofluorescence). Antibodies to ER (estrogen receptors), KL-1 (pancytokeratin), CD71 (transferrin receptor), CD29 (β1-integrins). CD45, CD3, CD4, CD8, CD20 infiltration was also evaluated. ZEISS microscope (AXIOSKOP; Germany), method of G.J. Hammerling et al. Statistical processing: IBM-SPSS Statistics v.21. RESULTS 63% of BC cases had CD71+ phenotype. CD71-mosaic tumors were observed in 14.4%. β1-integrin expression was monomorphic in 51.6% of cases and mosaic in 38.7%. 85% of ER-positive tumors were CD71-positive with a monomorphic type of reaction; p=0.014. Among ER-negative tumors, CD71-negative reactions were 2-fold more frequent and the monomorphic type was less frequent. ER-positive tumors were CD29-positive in 73%; p=0.031. 45.5% of ER+ tumors were CD29-monomorphic. Among ER-negative tumors, the frequency of CD29-monomorphic tumors was 55%. Significant infiltration by CD3+ cells was predominant in CD71-positive tumors; p=0.016. In the CD29-monomorphic phenotype, CD45+ infiltration was 31.3%, and in the mosaic phenotype, 67.1%. CONCLUSION BC aberrantly expresses transferrin receptors, β1-integrins. CD71 expression is associated with ER expression. ER-positive tumors are often monomorphic for CD71. Prominent CD3+ infiltration was present in CD71+ tumors. Expression of β1-integrins correlated with ER+ status and weak immune infiltration.
Collapse
Affiliation(s)
- S V Chulkova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E N Sholokhova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - I V Poddubnaya
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - I A Gladilina
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Egorova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I S Stilidi
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
5
|
Sun L, Guo S, Xie Y, Yao Y. The characteristics and the multiple functions of integrin β1 in human cancers. J Transl Med 2023; 21:787. [PMID: 37932738 PMCID: PMC10629185 DOI: 10.1186/s12967-023-04696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023] Open
Abstract
Integrins, which consist of two non-covalently linked α and β subunits, play a crucial role in cell-cell adhesion and cell-extracellular matrix (ECM) interactions. Among them, integrin β1 is the most common subunit and has emerged as a key mediator in cancer, influencing various aspects of cancer progression, including cell motility, adhesion, migration, proliferation, differentiation and chemotherapy resistance. However, given the complexity and sometimes contradictory characteristics, targeting integrin β1 for therapeutics has been a challenge. The emerging understanding of the mechanisms regulating by integrin β1 may guide the development of new strategies for anti-cancer therapy. In this review, we summarize the multiple functions of integrin β1 and signaling pathways which underlie the involvement of integrin β1 in several malignant cancers. Our review suggests the possibility of using integrin β1 as a therapeutic target and highlights the need for patient stratification based on expression of different integrin receptors in future clinical studies.
Collapse
Affiliation(s)
- Li Sun
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China
| | - Shuwei Guo
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Yiping Xie
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China.
| |
Collapse
|
6
|
Zhou Z, Li C, Wang Z, Haybaeck J, Zhang C. Cd44v6 acts as a directional responding factor in the process of transcoelomic metastasis from gastric carcinoma to Krukenberg tumor. Expert Rev Mol Diagn 2023; 23:583-588. [PMID: 37409376 DOI: 10.1080/14737159.2023.2223981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION Due to the limited number of studies focusing on the optimal treatment of multiple Krukenberg tumor (KT)-gastric carcinoma (KT - GC), it is necessary to conduct large-scale studies to confirm the definite role of serum tumor markers in the diagnosis and prognosis of KT. Moreover, the clinical significance of variant 6 of CD44 (CD44v6) in transcoelomic metastasis should be considered. AREAS COVERED This review covers molecular pre-cancer diagnosis, gastric carcinoma metastasis, and anti-cancer treatments. Additionally, gastrointestinal cancer metastasis is a key area for improvement. EXPERT OPINION The detection of CD44v6 differs in the World Health Organization Classification of Gastric Adenocarcinoma, the Lauren Classification of Gastric Adenocarcinoma, and the anatomic location of gastric adenocarcinoma. The results were compared among the three groups. The mechanism of gastric adenocarcinoma metastasis still requires further elucidation. CD44v6 molecular detection helps clarify the pre-cancer diagnosis of KT before seeding. If subsequent studies confirm its role as a signaling molecule, it could pave the way for new research directions in clinical practice; however, additional academic confirmation is necessary.
Collapse
Affiliation(s)
- Ziqi Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
- Faculty of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Can Li
- Faculty of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Zhiyu Wang
- Faculty of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Cuiwei Zhang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
7
|
Pang K, Shi ZD, Wei LY, Dong Y, Ma YY, Wang W, Wang GY, Cao MY, Dong JJ, Chen YA, Zhang P, Hao L, Xu H, Pan D, Chen ZS, Han CH. Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade. Drug Resist Updat 2023; 66:100907. [PMID: 36527888 DOI: 10.1016/j.drup.2022.100907] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
The binding of programmed death-1 (PD-1) on the surface of T cells and PD-1 ligand 1 (PD-L1) on tumor cells can prevent the immune-killing effect of T cells on tumor cells and promote the immune escape of tumor cells. Therefore, immune checkpoint blockade targeting PD-1/PD-L1 is a reliable tumor therapy with remarkable efficacy. However, the main challenges of this therapy are low response rate and acquired resistance, so that the outcomes of this therapy are usually unsatisfactory. This review begins with the description of biological structure of the PD-1/PD-L1 immune checkpoint and its role in a variety of cells. Subsequently, the therapeutic effects of immune checkpoint blockers (PD-1 / PD-L1 inhibitors) in various tumors were introduced and analyzed, and the reasons affecting the function of PD-1/PD-L1 were systematically analyzed. Then, we focused on analyzing, sorting out and introducing the possible underlying mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade including abnormal expression of PD-1/PD-L1 and some factors, immune-related pathways, tumor immune microenvironment, and T cell dysfunction and others. Finally, promising therapeutic strategies to sensitize the resistant patients with PD-1/PD-L1 blockade treatment were described. This review is aimed at providing guidance for the treatment of various tumors, and highlighting the drug resistance mechanisms to offer directions for future tumor treatment and improvement of patient prognosis.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China; Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Liu-Ya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, China
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Yu-Yang Ma
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Wei Wang
- Department of Medical College, Southeast University, 87 DingjiaQiao, Nanjing, China
| | - Guang-Yue Wang
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Ming-Yang Cao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Jia-Jun Dong
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yu-Ang Chen
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Peng Zhang
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Hao Xu
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Deng Pan
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China; Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
8
|
Czogalla B, Dötzer K, Sigrüner N, von Koch FE, Brambs CE, Anthuber S, Frangini S, Burges A, Werner J, Mahner S, Mayer B. Combined Expression of HGFR with Her2/neu, EGFR, IGF1R, Mucin-1 and Integrin α2β1 Is Associated with Aggressive Epithelial Ovarian Cancer. Biomedicines 2022; 10:2694. [PMID: 36359213 PMCID: PMC9687566 DOI: 10.3390/biomedicines10112694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2023] Open
Abstract
Hepatocyte growth factor receptor (HGFR), also known as c-mesenchymal-epithelial transition factor (c-MET), plays a crucial role in the carcinogenesis of epithelial ovarian cancer (EOC). In contrast, the mechanisms contributing to aberrant expression of HGFR in EOC are not fully understood. In the present study, the expression of HGFR with its prognostic and predictive role was evaluated immunohistochemically in a cohort of 42 primary ovarian cancer patients. Furthermore, we analyzed the dual expression of HGFR and other druggable biomarkers. In the multivariate Cox regression analysis, high HGFR expression was identified as an independent prognostic factor for a shorter progression-free survival (PFS) (hazard ratio (HR) 2.99, 95% confidence interval (CI95%) 1.01-8.91, p = 0.049) and overall survival (OS) (HR 5.77, CI95% 1.56-21.34, p = 0.009). In addition, the combined expression of HGFR, human epidermal growth factor receptor 2 (Her2/neu), epithelial growth factor receptor (EGFR), insulin-like growth factor 1 (IGF1R), Mucin-1 and Integrin α2β1 further significantly impaired PFS, platinum-free interval (PFI) and OS. Protein co-expression analyses were confirmed by transcriptomic data in a large, independent cohort of patients. In conclusion, new biomarker-directed treatment targets were identified to fight poor prognosis of primary EOC.
Collapse
Affiliation(s)
- Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Katharina Dötzer
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Nicole Sigrüner
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Franz Edler von Koch
- Gynecology and Obstetrics Clinic, Klinikum Dritter Orden, Menzinger Straße 44, 80638 Munich, Germany
| | - Christine E. Brambs
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University Munich, Ismaninger Straße 22, 81675 Munich, Germany
| | - Sabine Anthuber
- Department of Obstetrics and Gynecology, Starnberg Hospital, Oßwaldstraße 1, 82319 Starnberg, Germany
| | - Sergio Frangini
- Department of Obstetrics and Gynecology, Munich Clinic Harlaching, Sanatoriumsplatz 2, 81545 Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Jens Werner
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Barbara Mayer
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| |
Collapse
|
9
|
Hoffmann OI, Regenauer M, Czogalla B, Brambs C, Burges A, Mayer B. Interpatient Heterogeneity in Drug Response and Protein Biomarker Expression of Recurrent Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14092279. [PMID: 35565408 PMCID: PMC9103312 DOI: 10.3390/cancers14092279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
Recurrent ovarian-cancer patients face low 5-year survival rates despite chemotherapy. A variety of guideline-recommended second-line therapies are available, but they frequently result in trial-and-error treatment. Alterations and adjustments are common in the treatment of recurrent ovarian cancer. The drug response of 30 lesions obtained from 22 relapsed ovarian cancer patients to different chemotherapeutic and molecular agents was analyzed with the patient-derived ovarian-cancer spheroid model. The profile of druggable biomarkers was immunohistochemically assessed. The second-line combination therapy of carboplatin with gemcitabine was significantly superior to the combination of carboplatin with PEGylated liposomal doxorubicin (p < 0.0001) or paclitaxel (p = 0.0007). Except for treosulfan, all nonplatinum treatments tested showed a lesser effect on tumor spheroids compared to that of platinum-based therapies. Treosulfan showed the highest efficacy of all nonplatinum agents, with significant advantage over vinorelbine (p < 0.0001) and topotecan (p < 0.0001), the next best agents. The comparative testing of a variety of treatment options in the ovarian-cancer spheroid model resulted in the identification of more effective regimens for 30% of patients compared to guideline-recommended therapies. Recurrent cancers obtained from different patients revealed profound interpatient heterogeneity in the expression pattern of druggable protein biomarkers. In contrast, different lesions obtained from the same patient revealed a similar drug response and biomarker expression profile. Biological heterogeneity observed in recurrent ovarian cancers might explain the strong differences in the clinical drug response of these patients. Preclinical drug testing and biomarker profiling in the ovarian-cancer spheroid model might help in optimizing treatment management for individual patients.
Collapse
Affiliation(s)
| | - Manuel Regenauer
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany;
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany; (B.C.); (A.B.)
| | - Christine Brambs
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University Munich, Ismaninger Straße 22, 81675 Munich, Germany;
| | - Alexander Burges
- Department of Obstetrics and Gynecology, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany; (B.C.); (A.B.)
| | - Barbara Mayer
- SpheroTec GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany;
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
- Correspondence: ; Tel.: +49-89-4400-76438
| |
Collapse
|
10
|
Ruan Y, Chen L, Xie D, Luo T, Xu Y, Ye T, Chen X, Feng X, Wu X. Mechanisms of Cell Adhesion Molecules in Endocrine-Related Cancers: A Concise Outlook. Front Endocrinol (Lausanne) 2022; 13:865436. [PMID: 35464064 PMCID: PMC9021432 DOI: 10.3389/fendo.2022.865436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy is a critical treatment for endocrine-related cancers; however, chemoresistance and disease recurrence remain a challenge. The interplay between cancer cells and the tumor microenvironment via cell adhesion molecules (CAMs) promotes drug resistance, known as cell adhesion-mediated drug resistance (CAM-DR). CAMs are cell surface molecules that facilitate cell-to-cell or cell-to-extracellular matrix binding. CAMs exert an adhesion effect and trigger intracellular signaling that regulates cancer cell stemness maintenance, survival, proliferation, metastasis, epithelial-mesenchymal transition, and drug resistance. To understand these mechanisms, this review focuses on the role of CD44, cadherins, selectins, and integrins in CAM-DR in endocrine-related cancers.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yongsheng Ruan, ; Xuedong Wu,
| | - Libai Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danfeng Xie
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Luo
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiqi Xu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Ye
- Department of Endocrinology, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, China
| | - Xiaona Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yongsheng Ruan, ; Xuedong Wu,
| |
Collapse
|
11
|
Role of integrins in the metastatic spread of high-grade serous ovarian cancer. Arch Gynecol Obstet 2021; 305:1291-1298. [PMID: 34689222 PMCID: PMC9013321 DOI: 10.1007/s00404-021-06281-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Integrins may be involved in the metastatic spread of high-grade serous ovarian cancer (HGSOC) which determines the therapeutical approach and prognosis. We investigated the integrin expression in primary tumor and metastases of advanced HGSOC. METHODS The expression of integrin α2, α4, α5, α6, and β1 was assessed by immunostaining in tumor samples of the ovary, omentum, and peritoneum of each patient. Differences in integrin expression among tumor localizations and their association with clinicopathological parameters were examined by Fisher's exact test. The impact of integrin expression on progression-free survival (PFS) and overall survival (OS) was examined by Cox regression and Kaplan-Meier analyses. RESULTS Hundred and thirteen tumor samples of 40 HGSOC patients were examined. The expression of the integrins did not differ between the three tumor localizations (all p values > 0.05) with the exception of high expression of integrin α4 in primary tumor and omentum (52.5% versus 47.5%, p = 0.008) and primary tumor and peritoneum (52.5% versus 47.5%, p = 0.050). High expression of integrin α4 in peritoneum was associated with poorer PFS (HR 2.02 95% CI 1.01-4.05, p = 0.047), younger age (p = 0.047), and death (p = 0.046). Median PFS in patients with high expression of integrin α4 was 13.00 months, whereas median PFS in patients without high expression of integrin α4 was 21.00 months (p = 0.040). Expression of other integrins did not correlate with PFS or OS. CONCLUSION Expression of integrin α4 may be altered during the metastatic spread of HGSOC and affect prognosis, whereas expression of integrin α2, α5, α6, and β1 did not reveal any prognostic value.
Collapse
|