1
|
Kuo YY, Pen SY, Cheng CH, Ho WC, Chen CY, Wu WC, Chou HH, Chen JY, Lin CH, Lin JF, Yang SB, Chen PC. Decrease of K ATP channel expression through D3 receptor-mediated GSK3β signaling alleviates levodopa-induced dyskinesia (LID) in Parkinson's disease mouse model. Life Sci 2024; 359:123255. [PMID: 39557392 DOI: 10.1016/j.lfs.2024.123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
AIMS The standard Parkinson's disease (PD) treatment is L-3,4-dihydroxyphenylalanine (L-DOPA); however, its long-term use may cause L-DOPA-induced dyskinesia (LID). Aberrant activation of medium spiny neurons (MSNs) contributes to LID, and MSN excitability is regulated by dopamine D3 receptor (D3R) and ATP-sensitive potassium (KATP) channel activity. Nevertheless, it remains unclear if D3R and KATP channels may be linked in the context of LID. METHODS Wild-type and tyrosine hydroxylase (TH)-specific Kir6.2 knockout mice were injected with 6-hydroxydopamine (6-OHDA) to generate a PD mouse model, then chronically treated with L-DOPA to induce LID. Analyses included immunohistochemical staining, biochemical endpoints, and behavior tests. The mechanisms by which D3R/KATP channels regulate LID in the PD/LID mouse model were probed by treatment with a D3R antagonist, KATP channel opener and glycogen synthase kinase 3β (GSK3β) inhibitor, followed by evaluation of abnormal involuntary movements (AIMs). KEY FINDINGS The D3R antagonist FAUC365 alleviated LID, reducing AIMs and protecting against degeneration of the nigrostriatal pathway, which occurred through a direct interaction between D3Rs and KATP channels. In line with this mechanism, activation of D3R/GSK3β signaling increased KATP channel expression in the striatum of PD/LID mice. Additionally, the KATP channel opener Diz slowed LID progression and preserved nigrostriatal projections. Consistently, mice with TH-specific knockout of Kir6.2 exhibited reduced PD-like symptoms and less severe LID. SIGNIFICANCE D3Rs act through GSK3β signaling to regulate expression of KATP channels, which may subsequently modulate LID. Inhibition of KATP channels in TH-positive cells is sufficient to reduce AIMs in a mouse model of PD/LID.
Collapse
Affiliation(s)
- Yi-Ying Kuo
- Department of Physiology, College of Medicine, National Cheng Kung Univesity, Tainan 70101, Taiwan; Institue of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Sih-Yu Pen
- Department of Physiology, College of Medicine, National Cheng Kung Univesity, Tainan 70101, Taiwan
| | - Chia-Hui Cheng
- Department of Physiology, College of Medicine, National Cheng Kung Univesity, Tainan 70101, Taiwan
| | - Wan-Chen Ho
- Department of Physiology, College of Medicine, National Cheng Kung Univesity, Tainan 70101, Taiwan
| | - Ching-Yi Chen
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Wen-Chung Wu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ho-Hsuan Chou
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jung-Yao Chen
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Han Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, Taiwan
| | - Jen-Feng Lin
- Department of Emergency, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Taiwan
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, College of Medicine, National Cheng Kung Univesity, Tainan 70101, Taiwan; Institue of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
2
|
Liang G, Lee YZ, Kow ASF, Lee QL, Cheng Lim LW, Yusof R, Tham CL, Ho YC, Lee MT. Neuroprotective effects of Gypenosides: A review on preclinical studies in neuropsychiatric disorders. Eur J Pharmacol 2024; 978:176766. [PMID: 38908668 DOI: 10.1016/j.ejphar.2024.176766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Gynostemma pentaphyllum (Thunb.) Makino is a perennial creeping herb belonging to the Cucurbitaceae family that has a long history of usage in traditional oriental medicine. Gypenosides are the primary bioactive compounds in Gynostemma pentaphyllum. Because of the medicinal value of gypenosides, functional food and supplements containing gypenosides have been promoted and consumed with popularity, especially among Asian communities. This review presented the progress made in the research of pharmacological properties of gypenosides on diseases of the nervous system and their possible mechanism of action. To date, preclinical studies have demonstrated the therapeutic effects of gypenosides in alleviating neuropsychiatric disorders like depression, Parkinson's disease, Alzheimer's disease, secondary dementia, stroke, optic neuritis, etc. Pharmacological studies have discovered that gypenosides can modulate various major signaling pathways like NF-κB, Nrf2, AKT, ERK1/2, contributing to the neuroprotective properties. However, there is a dearth of clinical research on gypenosides, with current investigations on the compounds being mainly conducted in vitro and on animals. Future studies focusing on isolating and purifying novel gypenosides and investigations on exploring the potential molecular mechanism underlying their biological activities are warranted, which may serve as a foundation for further clinical trials for the betterment of human health.
Collapse
Affiliation(s)
- Gengfan Liang
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia.
| | - Yu Zhao Lee
- Office of Postgraduate Studies, UCSI University, Kuala Lumpur, 56000, Malaysia; Faculty of Applied Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia.
| | | | - Qi Long Lee
- School of Health Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | - Luis Wei Cheng Lim
- School of Health Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia.
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang , 43400, Selangor, Malaysia; Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang , 43400, Selangor, Malaysia.
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan.
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia; Centre of Research for Mental Health and Well-being, UCSI University, Kuala Lumpur, 56000, Malaysia.
| |
Collapse
|
3
|
Salvatore MF. Dopamine Signaling in Substantia Nigra and Its Impact on Locomotor Function-Not a New Concept, but Neglected Reality. Int J Mol Sci 2024; 25:1131. [PMID: 38256204 PMCID: PMC10815979 DOI: 10.3390/ijms25021131] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The mechanistic influences of dopamine (DA) signaling and impact on motor function are nearly always interpreted from changes in nigrostriatal neuron terminals in striatum. This is a standard practice in studies of human Parkinson's disease (PD) and aging and related animal models of PD and aging-related parkinsonism. However, despite dozens of studies indicating an ambiguous relationship between changes in striatal DA signaling and motor phenotype, this perseverating focus on striatum continues. Although DA release in substantia nigra (SN) was first reported almost 50 years ago, assessment of nigral DA signaling changes in relation to motor function is rarely considered. Whereas DA signaling has been well-characterized in striatum at all five steps of neurotransmission (biosynthesis and turnover, storage, release, reuptake, and post-synaptic binding) in the nigrostriatal pathway, the depth of such interrogations in the SN, outside of cell counts, is sparse. However, there is sufficient evidence that these steps in DA neurotransmission in the SN are operational and regulated autonomously from striatum and are present in human PD and aging and related animal models. To complete our understanding of how nigrostriatal DA signaling affects motor function, it is past time to include interrogation of nigral DA signaling. This brief review highlights evidence that changes in nigral DA signaling at each step in DA neurotransmission are autonomous from those in striatum and changes in the SN alone can influence locomotor function. Accordingly, for full characterization of how nigrostriatal DA signaling affects locomotor activity, interrogation of DA signaling in SN is essential.
Collapse
Affiliation(s)
- Michael F Salvatore
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
4
|
Alsalmi M, Al-Kassmy J, Kang W, Palayew M, Huot P. Levodopa-induced dyskinesia: do current clinical trials hold hope for future treatment? Expert Opin Pharmacother 2024; 25:1-3. [PMID: 38116733 DOI: 10.1080/14656566.2023.2298345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Affiliation(s)
- Mohammed Alsalmi
- Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada
| | - Jawad Al-Kassmy
- Royal College of Surgeons in Ireland, School of Medicine, Dublin, Ireland
| | - Woojin Kang
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Michael Palayew
- Royal College of Surgeons in Ireland, School of Medicine, Dublin, Ireland
| | - Philippe Huot
- Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
6
|
Jenner P, Falup-Pecurariu C, Leta V, Verin M, Auffret M, Bhidayasiri R, Weiss D, Borovečki F, Jost WH. Adopting the Rumsfeld approach to understanding the action of levodopa and apomorphine in Parkinson's disease. J Neural Transm (Vienna) 2023; 130:1337-1347. [PMID: 37210460 PMCID: PMC10645644 DOI: 10.1007/s00702-023-02655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/14/2023] [Indexed: 05/22/2023]
Abstract
Dopaminergic therapies dominate the treatment of the motor and non-motor symptoms of Parkinson's disease (PD) but there have been no major advances in therapy in many decades. Two of the oldest drugs used appear more effective than others-levodopa and apomorphine-but the reasons for this are seldom discussed and this may be one cause for a lack of progress. This short review questions current thinking on drug action and looks at whether adopting the philosophy of ex-US Secretary of State Donald Rumsfeld reveals 'unknown' aspects of the actions of levodopa and apomorphine that provide clues for a way forward. It appears that both levodopa and apomorphine have a more complex pharmacology than classical views would suggest. In addition, there are unexpected facets to the mechanisms through which levodopa acts that are either forgotten as 'known unknowns' or ignored as 'unknown unknowns'. The conclusion reached is that we may not know as much as we think about drug action in PD and there is a case for looking beyond the obvious.
Collapse
Affiliation(s)
- P Jenner
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
| | - C Falup-Pecurariu
- Department of Neurology, Transylvania University, 500036, Brasov, Romania
| | - V Leta
- Parkinson's Foundation Center of Excellence at King's College Hospital; Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London and National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, Institute of Psychology, Psychiatry and Neurosciences, King's College London, London, UK
| | - M Verin
- Institut des Neurosciences Cliniques de Rennes (INCR); Behavior and Basal Ganglia Research Unit, CIC-IT, CIC1414, Pontchaillou University Hospital and University of Rennes, Rennes, France
| | - M Auffret
- Institut des Neurosciences Cliniques de Rennes (INCR); Behavior and Basal Ganglia Research Unit, CIC-IT, CIC1414, Pontchaillou University Hospital and University of Rennes, Rennes, France
- France Développement Electronique (FDE), Monswiller, France
| | - Roongroj Bhidayasiri
- Department of Medicine, Faculty of Medicine, Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, 10330, Thailand
| | - D Weiss
- Department for Neurodegenerative Diseases, Centre for Neurology, Hertie-Institute for Clinical Brain Research, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - F Borovečki
- Division for Neurodegenerative Diseases and Neurogenomics, Department of Neurology, University Hospital Centre Zagreb, 10000, Zagreb, Croatia
| | - W H Jost
- Parkinson-Klinik Ortenau, Kreuzbergstr. 12-16, 77709, Wolfach, Germany
| |
Collapse
|
7
|
Grigoriou S, Espa E, Odin P, Timpka J, von Grothusen G, Jakobsson A, Cenci MA. Comparison of dyskinesia profiles after L-DOPA dose challenges with or without dopamine agonist coadministration. Neuropharmacology 2023:109630. [PMID: 37315840 DOI: 10.1016/j.neuropharm.2023.109630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Many patients with Parkinson's disease (PD) experiencing l-DOPA-induced dyskinesia (LID) receive adjunct treatment with dopamine agonists, whose functional impact on LID is unknown. We set out to compare temporal and topographic profiles of abnormal involuntary movements (AIMs) after l-DOPA dose challenges including or not the dopamine agonist ropinirole. Twenty-five patients with PD and a history of dyskinesias were sequentially administered either l-DOPA alone (150% of usual morning dose) or an equipotent combination of l-DOPA and ropinirole in random order. Involuntary movements were assessed by two blinded raters prior and every 30 min after drug dosing using the Clinical Dyskinesia Rating Scale (CDRS). A sensor-recording smartphone was secured to the patients' abdomen during the test sessions. The two raters' CDRS scores were highly reliable and concordant with models of hyperkinesia presence and severity trained on accelerometer data. The dyskinesia time curves differed between treatments as the l-DOPA-ropinirole combination resulted in lower peak severity but longer duration of the AIMs compared with l-DOPA alone. At the peak of the AIMs curve (60-120 min), l-DOPA induced a significantly higher total hyperkinesia score, whereas in the end phase (240-270 min), both hyperkinesia and dystonia tended to be more severe after the l-DOPA-ropinirole combination (though reaching statistical significance only for the item, arm dystonia). Our results pave the way for the introduction of a combined l-DOPA-ropinirole challenge test in the early clinical evaluation of antidyskinetic treatments. Furthermore, we propose a machine-learning method to predict CDRS hyperkinesia severity using accelerometer data.
Collapse
Affiliation(s)
- Sotirios Grigoriou
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Neurology, Rehabilitation Medicine, Memory and Geriatrics, Skane University Hospital, Sweden.
| | - Elena Espa
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Per Odin
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Neurology, Rehabilitation Medicine, Memory and Geriatrics, Skane University Hospital, Sweden
| | - Jonathan Timpka
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Neurology, Rehabilitation Medicine, Memory and Geriatrics, Skane University Hospital, Sweden
| | - Gustaf von Grothusen
- Division of Mathematical Statistics, Center for Mathematical Sciences, Lund University, Lund, Sweden
| | - Andreas Jakobsson
- Division of Mathematical Statistics, Center for Mathematical Sciences, Lund University, Lund, Sweden
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|