1
|
Katsaraki K, Kontos CK, Ardavanis-Loukeris G, Tzovaras AA, Sideris DC, Scorilas A. Exploring the time-dependent regulatory potential of microRNAs in breast cancer cells treated with proteasome inhibitors. Clin Transl Oncol 2024; 26:1256-1267. [PMID: 38038871 PMCID: PMC11026233 DOI: 10.1007/s12094-023-03349-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE Breast cancer (BrCa) is a predominant type of cancer with a disparate molecular nature. MicroRNAs (miRNAs) have emerged as promising key players in the regulation of pathological processes in BrCa. Proteasome inhibitors (PIs) emerged as promising anticancer agents for several human malignancies, including BrCa, inhibiting the function of the proteasome. Aiming to shed light on the miRNA regulatory effect in BrCa after treatment with PIs, we used two PIs, namely bortezomib and carfilzomib. MATERIALS AND METHODS Four BrCa cell lines of distinct molecular subtypes were treated with these PIs. Cell viability and IC50 concentrations were determined. Total RNA was extracted, polyadenylated, and reversely transcribed. Next, the levels of specific miRNAs with a significant role in BrCa were determined using relative quantification, and their regulatory effect was assessed. RESULTS High heterogeneity was discovered in the levels of miRNAs in the four cell lines, after treatment. The miRNA levels fluctuate with distinct patterns, in 24, 48, or 72 hours. Interestingly, miR-1-3p, miR-421-3p, and miR-765-3p appear as key molecules, as they were found deregulated, in almost all combinations of cell lines and PIs. In the SK-BR-3 cell line, the majority of the miRNAs were significantly downregulated in treated compared to untreated cells, with miR-21-5p being the only one upregulated. Finally, various significant biological processes, molecular functions, and pathways were predicted to be affected. CONCLUSIONS The diversity of pathways predicted to be affected by the diversity in miRNA expression after treatment with PIs paves the way for the recognition of new regulatory axes in BrCa.
Collapse
Affiliation(s)
- Katerina Katsaraki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece.
| | - Gerasimos Ardavanis-Loukeris
- First Department of Medical Oncology, "Saint Savvas" General Anticancer Hospital of Athens, 11522, Athens, Greece
| | - Alexandros A Tzovaras
- First Department of Medical Oncology, "Saint Savvas" General Anticancer Hospital of Athens, 11522, Athens, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| |
Collapse
|
2
|
Boutilier AJ, Huang L, Elsawa SF. Waldenström Macroglobulinemia: Mechanisms of Disease Progression and Current Therapies. Int J Mol Sci 2022; 23:11145. [PMID: 36232447 PMCID: PMC9569492 DOI: 10.3390/ijms231911145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Waldenström macroglobulinemia is an indolent, B-cell lymphoma without a known cure. The bone marrow microenvironment and cytokines both play key roles in Waldenström macroglobulinemia (WM) tumor progression. Only one FDA-approved drug exists for the treatment of WM, Ibrutinib, but treatment plans involve a variety of drugs and inhibitors. This review explores avenues of tumor progression and targeted drug therapy that have been investigated in WM and related B-cell lymphomas.
Collapse
Affiliation(s)
- Ava J. Boutilier
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Lina Huang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Sherine F. Elsawa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
3
|
Voropaeva EN, Pospelova TI, Orlov YL, Churkina MI, Berezina OV, Gurazheva AA, Ageeva TA, Seregina OB, Maksimov VN. The Methylation of the p53 Targets the Genes MIR-203, MIR-129-2, MIR-34A and MIR-34B/C in the Tumor Tissue of Diffuse Large B-Cell Lymphoma. Genes (Basel) 2022; 13:genes13081401. [PMID: 36011313 PMCID: PMC9408007 DOI: 10.3390/genes13081401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
The regulation of oncogenes by microRNA is a focus of medical research. hsa-miR-203, hsa-mir-129, hsa-miR-34a, hsa-miR-34b and hsa-miR-34c are oncosuppressive microRNAs that mediate the antitumor activity of p53. We seek to evaluate the frequencies, co-occurrence and clinical significance of the methylation of the MIR-203, MIR-129-2, MIR-34A and MIR-34B/C genes in the tumor tissue of diffuse large B-cell lymphoma (DLBCL). The methylation was assessed in 73 samples of DLBCL and in 11 samples of lymph nodes of reactive follicular hyperplasia by Methyl-Specific Polymerase Chain Reaction (MS-PCR) and Methylation-Sensitive High-Resolution-Melting (MS-HRM) methods. All four studied genes were not methylated in the tissue of reactive lymphatic nodes. The methylation frequencies of the MIR-129-2, MIR-203, MIR-34A and MIR-34B/C genes in lymphoma tissue were 67%, 66%, 27% and 62%, respectively. Co-occurrence of MIR-203, MIR-129-2 and MIR-34B/C genes methylation, as well as the methylation of MIR-34B/C and MIR-34A pair genes were detected. The MIR-34A gene methylation was associated with increased International Prognostic Index (IPI) (p = 0.002), whereas the MIR-34B/C (p = 0.026) and MIR-203 (p = 0.011) genes’ methylation was connected with Ki-67 expression level in tumor tissue at more than 45%. We found an increasing frequency of detection of MIR-34A gene methylation in the group of patients with the Germinal-Center B-cell like (GCB-like) subtype of DLBCL (p = 0.046). There was a trend towards a decrease in the remission frequency after the first line of therapy (p = 0.060) and deterioration in overall survival (OS) (p = 0.162) in patients with DLBCL with methylation of the MIR-34A promoter. The methylation of the MIR-34A, MIR-34B/C, MIR-129-2 and MIR-203 genes in DLBCL is tumor-specific and occurs in combination. The methylation of the studied genes may be a potential differential diagnostic biomarker to distinguish between lymphoma and reactive lymph nodes, while its independent predictive value has not been confirmed yet.
Collapse
Affiliation(s)
- Elena N. Voropaeva
- Research Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 630089 Novosibirsk, Russia
- Faculty of Advanced Training and Retraining of Doctors, Novosibirsk State Medical University of the Ministry of Health of the Russian Federation, 630091 Novosibirsk, Russia
- Correspondence: (E.N.V.); (Y.L.O.)
| | - Tatjana I. Pospelova
- Faculty of Advanced Training and Retraining of Doctors, Novosibirsk State Medical University of the Ministry of Health of the Russian Federation, 630091 Novosibirsk, Russia
| | - Yuriy L. Orlov
- Research Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 630089 Novosibirsk, Russia
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia
- Correspondence: (E.N.V.); (Y.L.O.)
| | - Maria I. Churkina
- Faculty of Advanced Training and Retraining of Doctors, Novosibirsk State Medical University of the Ministry of Health of the Russian Federation, 630091 Novosibirsk, Russia
| | - Olga V. Berezina
- Faculty of Advanced Training and Retraining of Doctors, Novosibirsk State Medical University of the Ministry of Health of the Russian Federation, 630091 Novosibirsk, Russia
| | - Anna A. Gurazheva
- Research Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 630089 Novosibirsk, Russia
| | - Tatjana A. Ageeva
- Faculty of Advanced Training and Retraining of Doctors, Novosibirsk State Medical University of the Ministry of Health of the Russian Federation, 630091 Novosibirsk, Russia
- Regional Center of High Medical Technologies, 630084 Novosibirsk, Russia
| | - Olga B. Seregina
- Faculty of Advanced Training and Retraining of Doctors, Novosibirsk State Medical University of the Ministry of Health of the Russian Federation, 630091 Novosibirsk, Russia
| | - Vladimir N. Maksimov
- Research Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 630089 Novosibirsk, Russia
| |
Collapse
|
4
|
C Andrade A, Freitas TR, Dornelas GG, Gomes LC, Barbosa BL, Araújo SS, Gomes KB, Sabino AP. miR-197, miR-26a and miR-27a analysis in chronic lymphocytic leukemia. Biomark Med 2022; 16:903-914. [PMID: 35833845 DOI: 10.2217/bmm-2021-0873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: Chronic lymphocytic leukemia (CLL) involves the proliferation and increase of B-lymphocytes in the peripheral blood, bone marrow and lymphoid organs. This study evaluated the microRNAs miR-197, miR-26a and miR-27a as potential biomarkers for CLL. Patients & Methods: Eighty-two patients with CLL and 62 control subjects (CT) were investigated for these targets, using quantitative PCR (qPCR). Results: A significant reduction of all microRNAs was observed in CLL compared to the controls (p < 0.001). Significant negative correlations were observed for the clinical staging groups. After adjusting for multiple logistic regression analysis, miR-197 and miR-26a remained as possible independent risk factors related to the CLL. Conclusions: Our data indicated good performance of this microRNAs as potential biomarkers in CLL.
Collapse
Affiliation(s)
- Ana C Andrade
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, 6627, Presidente Antônio Carlos Ave, Pampulha, Belo Horizonte, MG, 31270901, Brazil
| | - Tulio R Freitas
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, 6627, Presidente Antônio Carlos Ave, Pampulha, Belo Horizonte, MG, 31270901, Brazil
| | - Geovana G Dornelas
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, 6627, Presidente Antônio Carlos Ave, Pampulha, Belo Horizonte, MG, 31270901, Brazil
| | | | | | - Sérgio Ss Araújo
- Clinical Hospital, Federal University of Minas Gerais, Presidente Antônio Carlos Ave, Pampulha, Belo Horizonte, MG, 31270901, Brazil
| | - Karina B Gomes
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, 6627, Presidente Antônio Carlos Ave, Pampulha, Belo Horizonte, MG, 31270901, Brazil
| | - Adriano P Sabino
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, 6627, Presidente Antônio Carlos Ave, Pampulha, Belo Horizonte, MG, 31270901, Brazil
| |
Collapse
|
5
|
Implication of microRNAs in Carcinogenesis with Emphasis on Hematological Malignancies and Clinical Translation. Int J Mol Sci 2022; 23:ijms23105838. [PMID: 35628648 PMCID: PMC9143361 DOI: 10.3390/ijms23105838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs, that are involved in the multistep process of carcinogenesis, contributing to all established hallmarks of cancer. In this review, implications of miRNAs in hematological malignancies and their clinical utilization fields are discussed. As components of the complex regulatory network of gene expression, influenced by the tissue microenvironment and epigenetic modifiers, miRNAs are “micromanagers” of all physiological processes including the regulation of hematopoiesis and metabolic pathways. Dysregulated miRNA expression levels contribute to both the initiation and progression of acute leukemias, the metabolic reprogramming of malignantly transformed hematopoietic precursors, and to the development of chemoresistance. Since they are highly stable and can be easily quantified in body fluids and tissue specimens, miRNAs are promising biomarkers for the early detection of hematological malignancies. Besides novel opportunities for differential diagnosis, miRNAs can contribute to advanced chemoresistance prediction and prognostic stratification of acute leukemias. Synthetic oligonucleotides and delivery vehicles aim the therapeutic modulation of miRNA expression levels. However, major challenges such as efficient delivery to specific locations, differences of miRNA expression patterns between pediatric and adult hematological malignancies, and potential side effects of miRNA-based therapies should be considered.
Collapse
|
6
|
High Expression of a tRNAPro Derivative Associates with Poor Survival and Independently Predicts Colorectal Cancer Recurrence. Biomedicines 2022; 10:biomedicines10051120. [PMID: 35625858 PMCID: PMC9138872 DOI: 10.3390/biomedicines10051120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is the second most lethal cause of cancer-related deaths in Europe. Fragments of tRNAPro are conserved among vertebrates, characterized by pleiotropic regulatory functions and have been found to discriminate colorectal tumors from normal colorectal mucosa. In the current study, we investigated the prognostic utility of 5′-tiRNA-ProTGG levels in CRC. For this purpose, total RNA was extracted from 155 malignant colorectal tumors and 74 adjacent non-cancerous tissue specimens, polyadenylated and reverse-transcribed using an oligo-dT adapter as primer. Real-time quantitative PCR (qPCR) was used to assess the levels of 5′-tiRNA-ProTGG. Kaplan-Meier survival analysis demonstrated that high 5′-tiRNA-ProTGG levels predict both poor disease-free survival (DFS) and overall survival (OS) of CRC patients. Of note, high 5′-tiRNA-ProTGG levels retain their unfavorable prognostic value in patients with rectal cancer and/or moderately differentiated CRC (grade II). More importantly, multivariate cox regression analysis highlighted that the overexpression of 5′-tiRNA-ProTGG constitutes an adverse prognostic factor predicting short-term relapse of CRC patients independently of the established prognosticators in CRC. Finally, bioinformatics analysis unveiled a potentially critical role of 5′-tiRNA-ProTGG regarding the maintenance of cellular homeostasis, signaling, cell communication, and cellular motility.
Collapse
|
7
|
Sun X, Guan G, Dai Y, Zhao P, Liu L, Wang Q, Li X. microRNA-155-5p initiates childhood acute lymphoblastic leukemia by regulating the IRF4/CDK6/CBL axis. J Transl Med 2022; 102:411-421. [PMID: 34775495 DOI: 10.1038/s41374-021-00638-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/06/2021] [Accepted: 06/23/2021] [Indexed: 11/09/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a common malignancy in children. In this study, we aimed to explore putative mechanisms of microRNA-155-5p (miR-155-5p) involvement in childhood ALL (cALL) via interactions with casitas B-lineage lymphoma (CBL), interferon regulatory factor 4 (IRF4), and cyclin-dependent kinase 6 (CDK6). Bioinformatic analysis was performed initially to identify differentially expressed genes in cALL. The expression levels of miR-155-5p, CBL, IRF4, and CDK6 in peripheral blood lymphocytes from clinical ALL samples were determined using RT-qPCR and Western blot assays. A dual-luciferase reporter gene assay was used to ascertain a possible targeting relationship between miR-155-5p and CBL, CCK-8 assay and flow cytometry were used to measure cell activity and apoptosis of ALL cells. Co-IP was performed to investigate the interaction between CBL and IRF4 and the ubiquitination level of IRF4. Furthermore, in vivo validation was performed inducing xenograft tumor models with ALL cells in nude mice. As indicated by bioinformatic analysis, miR-155-5p and CDK6 were upregulated and CBL was downregulated in ALL. miR-155-5p was found to target CBL to inhibit CBL expression. miR-155-5p promoted the proliferation of ALL cells and inhibited their apoptosis by inhibiting the expression of CBL, which otherwise degraded IRF4 protein through ubiquitination, leading to inhibited CDK6 expression. Collectively, the results show that miR-155-5p can promote the development of cALL via the regulation on CBL-mediated IRF4/CDK6 axis.
Collapse
Affiliation(s)
- Xiaojun Sun
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Guotao Guan
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Yunpeng Dai
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Ping Zhao
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Liying Liu
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Qi Wang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Xiuli Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.
| |
Collapse
|
8
|
miRNAs in Cancer (Review of Literature). Int J Mol Sci 2022; 23:ijms23052805. [PMID: 35269947 PMCID: PMC8910953 DOI: 10.3390/ijms23052805] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding, single-stranded RNA molecules that regulate gene expression at the post-transcriptional level by binding to mRNAs. miRNAs affect the course of processes of fundamental importance for the proper functioning of the organism. These processes include cell division, proliferation, differentiation, cell apoptosis and the formation of blood vessels. Altered expression of individual miRNAs has been shown in numerous cancers, which may indicate the oncogenic or suppressor potential of the molecules in question. This paper discusses the current knowledge about the possibility of using miRNA as a diagnostic marker and a potential target in modern anticancer therapies.
Collapse
|
9
|
Papanota AM, Karousi P, Kontos CK, Artemaki PI, Liacos CI, Papadimitriou MA, Bagratuni T, Eleutherakis-Papaiakovou E, Malandrakis P, Ntanasis-Stathopoulos I, Gavriatopoulou M, Kastritis E, Avgeris M, Dimopoulos MA, Scorilas A, Terpos E. A Cancer-Related microRNA Signature Shows Biomarker Utility in Multiple Myeloma. Int J Mol Sci 2021; 22:13144. [PMID: 34884950 PMCID: PMC8658678 DOI: 10.3390/ijms222313144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, arising from terminally differentiated B cells, namely plasma cells. miRNAs are small non-coding RNAs that participate in the post-transcriptional regulation of gene expression. In this study, we investigated the role of nine miRNAs in MM. CD138+ plasma cells were selected from bone marrow aspirates from MM and smoldering MM (sMM) patients. Total RNA was extracted and in vitro polyadenylated. Next, first-strand cDNA synthesis was performed using an oligo-dT-adapter primer. For the relative quantification of the investigated miRNAs, an in-house real-time quantitative PCR (qPCR) assay was developed. A functional in silico analysis of the miRNAs was also performed. miR-16-5p and miR-155-5p expression was significantly lower in the CD138+ plasma cells of MM patients than in those of sMM patients. Furthermore, lower levels of miR-15a-5p, miR-16-5p, and miR-222-3p were observed in the CD138+ plasma cells of MM patients with osteolytic bone lesions, compared to those without. miR-125b-5p was also overexpressed in the CD138+ plasma cells of MM patients with bone disease that presented with skeletal-related events (SREs). Furthermore, lower levels of miR-223-3p were associated with significantly worse overall survival in MM patients. In conclusion, we propose a miRNA signature with putative clinical utility in MM.
Collapse
Affiliation(s)
- Aristea-Maria Papanota
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
| | - Pinelopi I. Artemaki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
| | - Christine-Ivy Liacos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
| | - Tina Bagratuni
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Evangelos Eleutherakis-Papaiakovou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Panagiotis Malandrakis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| |
Collapse
|
10
|
tRNA Derivatives in Multiple Myeloma: Investigation of the Potential Value of a tRNA-Derived Molecular Signature. Biomedicines 2021; 9:biomedicines9121811. [PMID: 34944627 PMCID: PMC8698603 DOI: 10.3390/biomedicines9121811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/11/2023] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy arising from the clonal proliferation of malignant plasma cells. tRNA-derived RNA fragments (tRFs) constitute a class of small non-coding RNAs, deriving from specific enzymatic cleavage of tRNAs. To the best of our knowledge, this is one of few studies to uncover the potential clinical significance of tRFs in MM. Total RNA was extracted from CD138+ plasma cells of MM and smoldering MM patients, and in vitro polyadenylated. First-strand cDNA synthesis was performed, priming from an oligo-dT-adaptor sequence. Next, real-time quantitative PCR (qPCR) assays were developed for the quantification of six tRFs. Biostatistical analysis was performed to assess the results and in silico analysis was conducted to predict the function of one of the tRFs. Our results showed that elevated levels of five out of six tRFs are indicators of favorable prognosis in MM, predicting prolonged overall survival (OS), while two of them constitute potential molecular biomarkers of favorable prognosis in terms of disease progression. Moreover, three tRFs could be used as surrogate prognostic biomarkers along with the R-ISS staging system to predict OS. In conclusion, tRFs show molecular biomarker utility in MM, while their mechanisms of function merit further investigation.
Collapse
|
11
|
Editorial to the Special Issue "MicroRNA in Solid Tumor and Hematological Diseases". Biomedicines 2021; 9:biomedicines9111678. [PMID: 34829905 PMCID: PMC8615739 DOI: 10.3390/biomedicines9111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022] Open
|
12
|
Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Lahera G, Monserrat J, Muñoz-Merida L, Mora F, Rodríguez-Jiménez R, Fernandez-Rojo S, Quintero J, Álvarez-Mon M. MicroRNAs as Critical Biomarkers of Major Depressive Disorder: A Comprehensive Perspective. Biomedicines 2021; 9:biomedicines9111659. [PMID: 34829888 PMCID: PMC8615526 DOI: 10.3390/biomedicines9111659] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022] Open
Abstract
Major Depressive Disorder (MDD) represents a major global health concern, a body-mind malady of rising prevalence worldwide nowadays. The complex network of mechanisms involved in MDD pathophysiology is subjected to epigenetic changes modulated by microRNAs (miRNAs). Serum free or vesicles loaded miRNAs have starred numerous publications, denoting a key role in cell-cell communication, systematically and in brain structure and neuronal morphogenesis, activity and plasticity. Upregulated or downregulated expression of these signaling molecules may imply the impairment of genes implicated in pathways of MDD etiopathogenesis (neuroinflammation, brain-derived neurotrophic factor (BDNF), neurotransmitters, hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, circadian rhythms...). In addition, these miRNAs could serve as potential biomarkers with diagnostic, prognostic and predictive value, allowing to classify severity of the disease or to make decisions in clinical management. They have been considered as promising therapy targets as well and may interfere with available antidepressant treatments. As epigenetic malleable regulators, we also conclude emphasizing lifestyle interventions with physical activity, mindfulness and diet, opening the door to new clinical management considerations.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
- Correspondence:
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis Muñoz-Merida
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
| | - Fernando Mora
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research Hospital 12 de Octubre (imas 12), CIBERSAM, 28041 Madrid, Spain
| | - Sonia Fernandez-Rojo
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Javier Quintero
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
13
|
The Role of Circulating MicroRNAs in Patients with Early-Stage Pancreatic Adenocarcinoma. Biomedicines 2021; 9:biomedicines9101468. [PMID: 34680585 PMCID: PMC8533318 DOI: 10.3390/biomedicines9101468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is increasing in incidence and is still associated with a high rate of mortality. Only a minority of patients are diagnosed in the early stage. Radical surgery is the only potential curative procedure. However, radicality is reached in 20% of patients operated on. Despite the multidisciplinary approach in resectable tumors, early tumor recurrences are common. Options on how to select optimal candidates for resection remain limited. Nevertheless, accumulating evidence shows an important role of circulating non-coding plasma and serum microRNAs (miRNAs), which physiologically regulate the function of a target protein. miRNAs also play a crucial role in carcinogenesis. In PDAC patients, the expression levels of certain miRNAs vary and may modulate the function of oncogenes or tumor suppressor genes. As they can be detected in a patient's blood, they have the potential to become promising non-invasive diagnostic and prognostic biomarkers. Moreover, they may also serve as markers of chemoresistance. Thus, miRNAs could be useful for early and accurate diagnosis, prognostic stratification, and individual treatment planning. In this review, we summarize the latest findings on miRNAs in PDAC patients, focusing on their potential use in the early stage of the disease.
Collapse
|
14
|
Donzel M, Baseggio L, Fontaine J, Pesce F, Ghesquières H, Bachy E, Verney A, Traverse-Glehen A. New Insights into the Biology and Diagnosis of Splenic Marginal Zone Lymphomas. ACTA ACUST UNITED AC 2021; 28:3430-3447. [PMID: 34590593 PMCID: PMC8482189 DOI: 10.3390/curroncol28050297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
Splenic marginal zone lymphoma (SMZL) is a small B-cell lymphoma, which has been recognized as a distinct pathological entity since the WHO 2008 classification. It classically presents an indolent evolution, but a third of patients progress rapidly and require aggressive treatments, such as immuno-chemotherapy or splenectomy, with all associated side effects. In recent years, advances in the comprehension of SMZL physiopathology have multiplied, thanks to the arrival of new devices in the panel of available molecular biology techniques, allowing the discovery of new molecular findings. In the era of targeted therapies, an update of current knowledge is needed to guide future researches, such as those on epigenetic modifications or the microenvironment of these lymphomas.
Collapse
Affiliation(s)
- Marie Donzel
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
| | - Lucile Baseggio
- Laboratoire d’hématologie, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France;
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
| | - Juliette Fontaine
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
| | - Florian Pesce
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
| | - Hervé Ghesquières
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
- Service d’hématologie, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Emmanuel Bachy
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
- Service d’hématologie, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Aurélie Verney
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
| | - Alexandra Traverse-Glehen
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
- Correspondence: ; Tel.: +33-4-7876-1186
| |
Collapse
|
15
|
A Molecular Signature of Circulating MicroRNA Can Predict Osteolytic Bone Disease in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13153877. [PMID: 34359778 PMCID: PMC8345491 DOI: 10.3390/cancers13153877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Multiple myeloma bone disease (MMBD) is one of the most important complications of multiple myeloma with a great impact on quality of life. Recent advances in the field of imaging techniques provided clinicians with a variety of imaging modalities with high sensitivity for the diagnosis of MMBD. However, no circulating biomarkers are available to support the diagnosis of MMBD in cases where the results are inconclusive. The aim of our study was to investigate the clinical utility of 19 miRNAs implicated in osteoporosis in MMBD. Our results suggest that the levels of circulating let-7b-5p, miR-143-3p, miR-17-5p, miR-335-5p, and miR-214-3p (standalone or combined in multi-miRNA models) can effectively predict the presence of MMBD in newly diagnosed MM patients. Abstract Background: Multiple myeloma bone disease (MMBD) constitutes a common and severe complication of multiple myeloma (MM), impacting the quality of life and survival. We evaluated the clinical value of a panel of 19 miRNAs associated with osteoporosis in MMBD. Methods: miRNAs were isolated from the plasma of 62 newly diagnosed MM patients with or without MMBD. First-strand cDNA was synthesized, and relative quantification was performed using qPCR. Lastly, we carried out extensive biostatistical analysis. Results: Circulating levels of let-7b-5p, miR-143-3p, miR-17-5p, miR-214-3p, and miR-335-5p were significantly higher in the blood plasma of MM patients with MMBD compared to those without. Receiver operating characteristic curve and logistic regression analyses showed that these miRNAs could accurately predict MMBD. Furthermore, a standalone multi-miRNA–based logistic regression model exhibited the best predictive potential regarding MMBD. Two of those miRNAs also have a prognostic role in MM since survival analysis indicated that lower circulating levels of both let-7b-5p and miR-335-5p were associated with significantly worse progression-free survival, independently of the established prognostic factors. Conclusions: Our study proposes a miRNA signature to facilitate MMBD diagnosis, especially in ambiguous cases. Moreover, we provide evidence of the prognostic role of let-7b-5p and miR-335-5p as non-invasive prognostic biomarkers in MM.
Collapse
|
16
|
Alterations in microRNA Expression during Hematopoietic Stem Cell Mobilization. BIOLOGY 2021; 10:biology10070668. [PMID: 34356523 PMCID: PMC8301406 DOI: 10.3390/biology10070668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary Lymphoproliferative disorders comprise a heterogeneous group of hematological malignancies characterized by abnormal lymphocyte proliferation. Autologous hematopoietic stem cell transplantation plays a very important role in the treatment of lymphoproliferative diseases. The key element in this process is the effective mobilization of hematopoietic cells from the marrow niche to the peripheral blood. Mobilization of HSC is regulated by many factors, out of which miRNAs present in the hematopoietic niche via targeting cytokines, and signaling pathways may play an important regulatory role. This study investigated the expression of selected miRNAs in patients with multiple myeloma, Hodgkin’s lymphomas, and non-Hodgkin’s lymphomas undergoing mobilization procedures. The aim of the study was to evaluate the expression of hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-34a-5p, hsa-miR-126-3p, hsa-miR-146a-5p, hsa-miR-155-5p, and hsa-miR-223-3p during the mobilization procedure, and to assess their role in mobilization efficacy. The level of miRNAs was tested at two time points before the initiation of mobilization and on the day of the first apheresis. Our results suggest that the investigated miRNAs, especially hsa-miR-146a-5p, may influence the efficacy of HSC mobilization. Abstract microRNAs play an important role in the regulation of gene expression, cell fate, hematopoiesis, and may influence the efficacy of CD34+ cell mobilization. The present study examines the role of hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-34a-5p, hsa-miR-126-3p, hsa-miR-146a-5p, hsa-miR-155-5p, and hsa-miR-223-3p in the course of hematopoietic stem cell mobilization. The numbers of CD34+ cells collected in patients with hematological malignancies (39 multiple myelomas, 11 lymphomas) were determined during mobilization for an autologous hematopoietic stem cell transplantation. The miRNA level was evaluated by RT-PCR. Compared to baseline, a significant decline in hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-126-3p, hsa-miR-146a-5p, and hsa-miR-155-5p was observed on the day of the first apheresis (day A). An increase was observed only in the expression of hsa-miR-34a-5p. On day A, a negative correlation was found between hsa-miR-15a-5p and hsa-miR-146a-5p levels and the number of CD34+ cells in peripheral blood. A negative correlation was observed between hsa-miR-146a-5p and the number of collected CD34+ cells after the first apheresis. Good mobilizers, defined according to GITMO criteria, demonstrated a lower hsa-miR-146a-5p level on day A than poor mobilizers. Patients from the hsa-miR-146a-5p “low expressors” collected more CD34+ cells than “high expressors”. Our results suggest that the investigated miRNAs, especially hsa-miR-146a-5p, may influence the efficacy of HSC mobilization.
Collapse
|
17
|
Kabzinski J, Maczynska M, Majsterek I. MicroRNA as a Novel Biomarker in the Diagnosis of Head and Neck Cancer. Biomolecules 2021; 11:844. [PMID: 34198889 PMCID: PMC8228566 DOI: 10.3390/biom11060844] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer worldwide, with 890,000 new cases and 450,000 deaths in 2018, and although the survival statistics for some patient groups are improving, there is still an urgent need to find a fast and reliable biomarker that allows early diagnosis. This niche can be filled by microRNA, small single-stranded non-coding RNA molecules, which are expressed in response to specific events in the body. This article presents the potential use of microRNAs in the diagnosis of HNSCC, compares the advances in this field to other diseases, especially other cancers, and discusses the detailed use of miRNA as a biomarker in profiling and predicting the treatment outcome with radiotherapy and immunotherapy. Potential problems and difficulties related to the development of this promising technology, and areas on which future research should be focused in order to overcome these difficulties, were also indicated.
Collapse
Affiliation(s)
| | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, al. Kościuszki 4, 90-419 Łódź, Poland; (J.K.); (M.M.)
| |
Collapse
|
18
|
Del Giudice M, Peirone S, Perrone S, Priante F, Varese F, Tirtei E, Fagioli F, Cereda M. Artificial Intelligence in Bulk and Single-Cell RNA-Sequencing Data to Foster Precision Oncology. Int J Mol Sci 2021; 22:ijms22094563. [PMID: 33925407 PMCID: PMC8123853 DOI: 10.3390/ijms22094563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023] Open
Abstract
Artificial intelligence, or the discipline of developing computational algorithms able to perform tasks that requires human intelligence, offers the opportunity to improve our idea and delivery of precision medicine. Here, we provide an overview of artificial intelligence approaches for the analysis of large-scale RNA-sequencing datasets in cancer. We present the major solutions to disentangle inter- and intra-tumor heterogeneity of transcriptome profiles for an effective improvement of patient management. We outline the contributions of learning algorithms to the needs of cancer genomics, from identifying rare cancer subtypes to personalizing therapeutic treatments.
Collapse
Affiliation(s)
- Marco Del Giudice
- Cancer Genomics and Bioinformatics Unit, IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy; (M.D.G.); (S.P.); (S.P.); (F.P.); (F.V.)
- Candiolo Cancer Institute, FPO—IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy
| | - Serena Peirone
- Cancer Genomics and Bioinformatics Unit, IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy; (M.D.G.); (S.P.); (S.P.); (F.P.); (F.V.)
- Department of Physics and INFN, Università degli Studi di Torino, via P.Giuria 1, 10125 Turin, Italy
| | - Sarah Perrone
- Cancer Genomics and Bioinformatics Unit, IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy; (M.D.G.); (S.P.); (S.P.); (F.P.); (F.V.)
- Department of Physics, Università degli Studi di Torino, via P.Giuria 1, 10125 Turin, Italy
| | - Francesca Priante
- Cancer Genomics and Bioinformatics Unit, IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy; (M.D.G.); (S.P.); (S.P.); (F.P.); (F.V.)
- Department of Physics, Università degli Studi di Torino, via P.Giuria 1, 10125 Turin, Italy
| | - Fabiola Varese
- Cancer Genomics and Bioinformatics Unit, IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy; (M.D.G.); (S.P.); (S.P.); (F.P.); (F.V.)
- Department of Life Science and System Biology, Università degli Studi di Torino, via Accademia Albertina 13, 10123 Turin, Italy
| | - Elisa Tirtei
- Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Turin, Italy; (E.T.); (F.F.)
| | - Franca Fagioli
- Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Turin, Italy; (E.T.); (F.F.)
- Department of Public Health and Paediatric Sciences, University of Torino, 10124 Turin, Italy
| | - Matteo Cereda
- Cancer Genomics and Bioinformatics Unit, IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy; (M.D.G.); (S.P.); (S.P.); (F.P.); (F.V.)
- Candiolo Cancer Institute, FPO—IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy
- Correspondence: ; Tel.: +39-011-993-3969
| |
Collapse
|