1
|
Dadgar H, Pashazadeh A, Norouzbeigi N, Assadi M, Al-balooshi B, Baum RP, Al-Ibraheem A, Haidar M, Beheshti M, Geramifar P, Vali R, Mohammadi S, Dash S, Malasani V, Cimini A, Ricci M, Esmail AA, Murad S, Marafi F, Treglia G, Khalaf AN, Anwar FM, Usmani S, Omar Y, Muhsin H, Tyurin IE, Zakhary A, Al-Sebaie S, Cortes DM, AlHashim M, Arabi H, Zaidi H. Targeted radioligand therapy: physics and biology, internal dosimetry and other practical aspects during 177Lu/ 225Ac treatment in neuroendocrine tumors and metastatic prostate cancer. Theranostics 2025; 15:4368-4397. [PMID: 40225563 PMCID: PMC11984387 DOI: 10.7150/thno.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
Radioligand therapy (RLT) has garnered significant attention due to the recent emergence of innovative and effective theranostic agents, which showed promising therapeutic and prognostic results in various cancers. Moreover, understanding the interaction between different types of radiation and biological tissues is essential for optimizing therapeutic interventions These concepts directly apply to clinical RLTs and play a crucial role in determining the efficacy and toxicity profile of different radiopharmaceutical agents. Personalized dosimetry is a powerful tool that aids in estimating patient-specific absorbed doses in both tumors and normal organs. Dosimetry in RLT is an area of active investigation, as our current understanding of the relationship between absorbed dose and tissue damage is primarily derived from external-beam radiation therapy. Further research is necessary to comprehensively comprehend this relationship in the context of RLTs. In the present review, we present a thorough examination of the involvement of 177Lu/225Ac radioisotopes in the induction of direct and indirect DNA damage, as well as their influence on the initiation of DNA repair mechanisms in cancer cells of neuroendocrine tumors and metastatic prostate cancer. Current data indicate that high-energy α-emitter radioisotopes can directly impact DNA structure by causing ionization, leading to the formation of ionized atoms or molecules. This ionization process predominantly leads to the formation of irreparable and intricate double-strand breaks (DSBs). On the other hand, the majority of DNA damage caused by β-emitter radioisotopes is indirect, as it involves the production of free radicals and subsequent chemical reactions. Beta particles themselves can also physically interact with the DNA molecule, resulting in single-strand breaks (SSBs) and potentially reversible DSBs.
Collapse
Affiliation(s)
- Habibollah Dadgar
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran
| | - Ali Pashazadeh
- Department of Nuclear Medicine, Mainz University Hospital, Mainz, Germany
| | - Nasim Norouzbeigi
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Batool Al-balooshi
- Dubai Nuclear medicine & Molecular imaging Center- Dubai Academic Health corporation- DAHC, United Arab Emirates
| | - Richard P. Baum
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Wiesbaden, Germany
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Mohamad Haidar
- Department of Clinical Radiology, American University of Beirut, Beirut, Lebanon
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine & Endocrinology, University Hospital, Paracelsus Medical University Salzburg, A-5020 Salzburg, Austria
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Vali
- Nuclear Medicine department, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Seyed Mohammadi
- Hospital & Health Care Professional, Pittsburgh Medical Center, Nuclear Medicine department, Pittsburg, USA
| | - Swagat Dash
- Department of Nuclear Medicine and Molecular Theranostics, Sarvodaya Hospital, Sector 8, Faridabad, Haryana, India
| | - Vindhya Malasani
- Department of Nuclear Medicine and Molecular Theranostics, Sarvodaya Hospital, Sector 8, Faridabad, Haryana, India
| | - Andrea Cimini
- Nuclear Medicine Unit, St. Salvatore Hospital, 67100 L'Aquila, Italy
| | - Maria Ricci
- Nuclear Medicine Unit, Cardarelli Hospital, 86100 Campobasso, Italy
| | | | - Sarah Murad
- Nuclear Medicine Department, Kuwait Cancer Control Center, Kuwait City, Kuwait
| | - Fahad Marafi
- Jaber Alahmad Center of Nuclear Medicine and Molecular Imaging, Kuwait City, Kuwait
| | - Giorgio Treglia
- Division of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Biomedical Sciences, Universitá della Svizzera italiana, Lugano, Switzerland
| | - Aysar Najeh Khalaf
- Nuclear Medicine Department, Warith International Cancer Institute, Karbala, Iraq
| | - Farah M. Anwar
- Nuclear Medicine Department, Warith International Cancer Institute, Karbala, Iraq
| | - Sharjeel Usmani
- Department of Nuclear Medicine Sultan Qaboos Comprehensive Cancer Care and Research Center (SQCCCRC), Seeb, Oman
| | - Yehia Omar
- PET-CT department at Misr Radiology Center, Heliopolis, Egypt
| | - Haider Muhsin
- Nuclear Medicine department, Amir Al-Momineen Specialty Hospital, Al-Najaf Governorate, Iraq
| | - Igore E. Tyurin
- MOH Russia, Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Russia
| | - Andrew Zakhary
- MOH Russia, Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Russia
| | - Sahar Al-Sebaie
- Ministry of National Gaurds Health Services, Jeddah, Saudi Arabia
| | | | - Maryam AlHashim
- Radiology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, King Faisal Ibn Abd Aziz Rd, Dammam 34212, Saudi Arabia
- Medical Imaging Services Center, King Fahad Specialist Hospital Dammam, Dammam 32253, Saudi Arabia
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, Geneva, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
- University Research and Innovation Center, Óbuda University, Budapest, Hungary
| |
Collapse
|
2
|
Lima H, Etchebehere M, Bogoni M, Torricelli C, Nogueira-Lima E, Deflon VM, Lima M, Etchebehere E. Theranostics Nuclear Medicine in Prostate Cancer. Pharmaceuticals (Basel) 2024; 17:1483. [PMID: 39598394 PMCID: PMC11597825 DOI: 10.3390/ph17111483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Theranostic Nuclear Medicine is based on the idea of combining the same molecule (or drug) with different radioisotopes for both diagnosis and treatment, a concept that emerged in the early 1940s with the use of radioactive iodine for thyroid diseases. Theranostic Nuclear Medicine has since expanded to diseases of higher incidence, such as prostate cancer, with several imaging methods used to assess the extent of the disease and the corresponding radiopharmaceuticals used for treatment. For example, by detecting osteoblastic metastases by bone scintigraphy, corresponding radiopharmaceuticals with therapeutic properties can be administered to eliminate or reduce pain associated with metastases and/or determine overall survival gain. The purpose of this review is to discuss the role of Theranostic Nuclear Medicine in prostate cancer, addressing the main diagnostic imaging studies with their corresponding treatments in the Theranostic model.
Collapse
Affiliation(s)
- Helena Lima
- Faculdade de Medicina, Pontifícia Universidade Católica de Campinas (PUCC), Campinas 13087-571, Brazil;
| | - Marina Etchebehere
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil;
| | - Mateos Bogoni
- Hospital Erasto Gaertner, Curitiba 81520-060, Brazil;
- Diagnóstico Avançado por Imagem (DAPI), Curitiba 80430-210, Brazil
| | - Caroline Torricelli
- Division of Nuclear Medicine, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (C.T.); (E.N.-L.); (M.L.)
| | - Ellen Nogueira-Lima
- Division of Nuclear Medicine, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (C.T.); (E.N.-L.); (M.L.)
| | - Victor M. Deflon
- São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos 13566-590, Brazil;
| | - Mariana Lima
- Division of Nuclear Medicine, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (C.T.); (E.N.-L.); (M.L.)
- Medicina Nuclear de Campinas (Grupo MND), Campinas 13020-432, Brazil
| | - Elba Etchebehere
- Division of Nuclear Medicine, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (C.T.); (E.N.-L.); (M.L.)
- Medicina Nuclear de Campinas (Grupo MND), Campinas 13020-432, Brazil
| |
Collapse
|
3
|
Shah A, Dabhade A, Bharadia H, Parekh PS, Yadav MR, Chorawala MR. Navigating the landscape of theranostics in nuclear medicine: current practice and future prospects. Z NATURFORSCH C 2024; 79:235-266. [PMID: 38807355 DOI: 10.1515/znc-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Theranostics refers to the combination of diagnostic biomarkers with therapeutic agents that share a specific target expressed by diseased cells and tissues. Nuclear medicine is an exciting component explored for its applicability in theranostic concepts in clinical and research investigations. Nuclear theranostics is based on the employment of radioactive compounds delivering ionizing radiation to diagnose and manage certain diseases employing binding with specifically expressed targets. In the realm of personalized medicine, nuclear theranostics stands as a beacon of potential, potentially revolutionizing disease management. Studies exploring the theranostic profile of radioactive compounds have been presented in this review along with a detailed explanation of radioactive compounds and their theranostic applicability in several diseases. It furnishes insights into their applicability across diverse diseases, elucidating the intricate interplay between these compounds and disease pathologies. Light is shed on the important milestones of nuclear theranostics beginning with radioiodine therapy in thyroid carcinomas, MIBG labelled with iodine in neuroblastoma, and several others. Our perspectives have been put forth regarding the most important theranostic agents along with emerging trends and prospects.
Collapse
Affiliation(s)
- Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Akshada Dabhade
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Hetvi Bharadia
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mayur R Yadav
- Department of Pharmacy Practice and Administration, Western University of Health Science, 309 E Second St, Pomona, CA, 91766, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
4
|
Bilen MA, Khilfeh I, Rossi C, Muser E, Morrison L, Hilts A, Diaz L, Lefebvre P, Pilon D, George DJ. Homologous Recombination Repair Testing Patterns and Outcomes in mCRPC by Alteration Status and Race. CLINICOECONOMICS AND OUTCOMES RESEARCH 2024; 16:657-674. [PMID: 39257456 PMCID: PMC11385689 DOI: 10.2147/ceor.s468680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Background Alterations in DNA damage repair genes in advanced prostate cancer (PC) may impact responses to therapy and clinical outcomes. This study described homologous recombination repair (HRR) testing patterns and clinical outcomes among patients with metastatic castration-resistant prostate cancer (mCRPC) by HRR alteration status and race in the United States (US). Methods Clinical data in the nationwide (US-based) Flatiron Health-Foundation Medicine, Inc. (FMI) Metastatic PC Clinico-Genomic Database were evaluated (01/01/2011-12/31/2022). Patients initiating first-line (1L) mCRPC therapy on or after mCRPC diagnosis were included. Testing patterns, time-to-next treatment, overall survival (OS), and time-to-prostate specific antigen response were described. Results Of the 1367 patients with mCRPC and at least one HRR panel test prior to or on the date of 1L mCRPC therapy initiation, 332 (24.3%) were HRR positive (White patients: n = 219 [66.0%]; Black patients: n = 37 [11.1%]) and 1035 (75.7%) were HRR negative (White patients: n = 702 [67.8%]; Black patients: n = 84 [8.1%]). The mean time between first positive test and 1L mCRPC therapy initiation date was 588 days (White patients: 589 days; Black patients: 639 days). Among HRR positive relative to negative patients, trends for faster progression (respective 12-month rate overall: 71.1% and 63.7%; White patients: 72.5% and 64.0%; Black patients: 65.4% and 56.4%), shorter OS (respective 24-month rate overall: 46.8% and 51.9%; White patients: 48.6% and 46.2%; Black patients: 52.8% and 54.1%), and decreased treatment response (respective 12-month rate overall: 24.3% and 37.9%; White patients: 24.5% and 35.2%; Black patients: 17.0% and 43.9%) were observed. Conclusion Patients with mCRPC positive for HRR alterations tended to exhibit poorer treatment responses and clinical outcomes than those with a negative status. These findings highlight the importance of timely genetic testing in mCRPC, particularly among Black patients, and the need for improved 1L targeted therapies to address the unmet need in HRR positive mCRPC.
Collapse
Affiliation(s)
- Mehmet Asim Bilen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Erik Muser
- Janssen Scientific Affairs, LLC, Horsham, PA, USA
| | | | | | | | | | | | - Daniel J George
- Department of Medicine, Duke University Cancer Center, Durham, NC, USA
| |
Collapse
|
5
|
Yan Y, Zhuo H, Li T, Zhang J, Tan M, Chen Y. Advancements in PSMA ligand radiolabeling for diagnosis and treatment of prostate cancer: a systematic review. Front Oncol 2024; 14:1373606. [PMID: 38577331 PMCID: PMC10991730 DOI: 10.3389/fonc.2024.1373606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Prostate cancer(PCa), a leading global health concern, profoundly impacts millions of men worldwide. Progressing through two stages, it initially develops within the prostate and subsequently extends to vital organs such as lymph nodes, bones, lungs, and the liver. In the early phases, castration therapy is often employed to mitigate androgen effects. However, when prostate cancer becomes resistant to this treatment, alternative strategies become imperative. As diagnostic and treatment methodologies for prostate cancer continually advance, radioligand therapy (RLT) has emerged as a promising avenue, yielding noteworthy outcomes. The fundamental principle of RLT involves delivering radionuclide drugs to cancerous lesions through specific carriers or technologies. Subsequently, these radionuclide drugs release radioactive energy, facilitating the destruction of cancer cell tissues. At present, the positron emission tomography (PET) targeting PSMA has been widely developed for the use of diagnosis and staging of PCa. Notably, FDA-approved prostate-specific membrane antigen (PSMA) targeting agents, such as 68Ga-PSMA-11 and 177Lu-PSMA-617, represent significant milestones in enhancing diagnostic precision and therapeutic efficacy. This review emphasizes the current research status and outcomes of various radionuclide-labeled PSMA ligands. The objective is to provide valuable insights for the continued advancement of diagnostic and therapeutic approaches in the realm of prostate cancer.
Collapse
Affiliation(s)
- Yuanzhuo Yan
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Huixian Zhuo
- Department of Medical Imaging, Southwest Medical University, Luzhou, Sichuan, China
| | - Tengfei Li
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Jintao Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Min Tan
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Parveen A, Fatima A, Fatima I, Khan IU, Shahid A. Therapeutic efficacy and safety results of 177Lu-PSMA therapy in metastatic castration-resistant prostate cancer patients: first experience of a developing South Asian Country. Nucl Med Commun 2023; 44:876-887. [PMID: 37440195 DOI: 10.1097/mnm.0000000000001735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
OBJECTIVE Metastatic castration resistant-prostate cancer (mCRPC) is deadly condition that remains incurable despite various therapies. Initial studies have shown promising results with Lutetium-177 prostate-specific membrane antigen ( 177 Lu-PSMA) therapy for advanced prostate cancer. However, most of the published efficacy and safety data is retrospective. The purpose of the study was to prospectively evaluate the therapeutic efficacy and safety results of 177 Lu-PSMA therapy in mCRPC patients after 2 cycles. METHODS Twenty-five patients of mCRPC, treated with standard care treatment were enrolled for 2 cycles of 177 Lu-PSMA therapy. Prostate-specific antigen (PSA), Eastern Cooperative Oncology Group (ECOG) performance status, Visual Analogue Score (VAS) and Analgesic Quantification Scale (AQS) for efficacy and hemoglobin, total leukocyte, platelets and serum creatinine for toxicity were recorded pre and post-therapy. Paired sample t-test was used for statistical analysis. RESULTS Treated patients with mean PSA level of 157 ng/ml received mean dose of 6.84 GBq of 177 Lu-PSMA. For PSA, partial response (PR) was seen in 11/25 (44%), stable disease (SD) in 8/25 (32%) and progressive disease (PD) in 6/25 (24%) patients. Grade 1 and 2 hemoglobin toxicity was seen in 5/25 (20%) and 6/25 (24%) patients respectively. No patient developed grade 3 or 4 bone marrow toxicities. Grade 1 and 2 nephrotoxicity was seen in 1 patient each. Statistically significant difference was seen in ECOG, VAS and AQS scores ( P < 0.001). No significant nephrotoxicity was observed ( P = 0.558). CONCLUSION Efficacy and safety of 177 Lu-PSMA therapy after 2 cycles have shown significant PSA response and pain palliation in heavily pretreated mCRPC patients.
Collapse
|
7
|
Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1733. [PMID: 37376181 DOI: 10.3390/pharmaceutics15061733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Targeted radionuclide therapy has become increasingly prominent as a nuclear medicine subspecialty. For many decades, treatment with radionuclides has been mainly restricted to the use of iodine-131 in thyroid disorders. Currently, radiopharmaceuticals, consisting of a radionuclide coupled to a vector that binds to a desired biological target with high specificity, are being developed. The objective is to be as selective as possible at the tumor level, while limiting the dose received at the healthy tissue level. In recent years, a better understanding of molecular mechanisms of cancer, as well as the appearance of innovative targeting agents (antibodies, peptides, and small molecules) and the availability of new radioisotopes, have enabled considerable advances in the field of vectorized internal radiotherapy with a better therapeutic efficacy, radiation safety and personalized treatments. For instance, targeting the tumor microenvironment, instead of the cancer cells, now appears particularly attractive. Several radiopharmaceuticals for therapeutic targeting have shown clinical value in several types of tumors and have been or will soon be approved and authorized for clinical use. Following their clinical and commercial success, research in that domain is particularly growing, with the clinical pipeline appearing as a promising target. This review aims to provide an overview of current research on targeting radionuclide therapy.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
- Inserm, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR 1317, Univ Rennes, 35000 Rennes, France
| | - Barthélémy Ramée
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
| | - Marie Mougin-Degraef
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
- Groupement d'Intérêt Public ARRONAX, 1 Rue Aronnax, 44817 Saint Herblain, France
| |
Collapse
|
8
|
Parker D, Zambelli J, Lara MK, Wolf TH, McDonald A, Lee E, Abou-Elkacem L, Gordon EJ, Baum RP. Case Report: Long-term complete response to PSMA-targeted radioligand therapy and abiraterone in a metastatic prostate cancer patient. Front Oncol 2023; 13:1192792. [PMID: 37188199 PMCID: PMC10175697 DOI: 10.3389/fonc.2023.1192792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Despite decades of research and clinical trials, metastatic castration-resistant prostate cancer (mCRPC) remains incurable and typically fatal. Current treatments may provide modest increases in progression-free survival but can come with significant adverse effects and are disaggregated from the diagnostic imaging needed to fully assess the spread of metastatic disease. A theranostic approach, using radiolabeled ligands that target the cell surface protein PSMA, simplifies the visualization and disease treatment process by enabling both to use similar agents. Here, we describe an exemplary case wherein a gentleman in his 70s with mCRPC on diagnosis was treated with 177Lu-PSMA-617 and abiraterone, and remains disease-free to date, over five years later.
Collapse
Affiliation(s)
- David Parker
- Private Health Management, Los Angeles, CA, United States
| | | | | | | | - Amber McDonald
- Private Health Management, Los Angeles, CA, United States
| | - Erica Lee
- Private Health Management, Los Angeles, CA, United States
| | | | - Eva J. Gordon
- Private Health Management, Los Angeles, CA, United States
| | | |
Collapse
|
9
|
Ladrière T, Faudemer J, Levigoureux E, Peyronnet D, Desmonts C, Vigne J. Safety and Therapeutic Optimization of Lutetium-177 Based Radiopharmaceuticals. Pharmaceutics 2023; 15:pharmaceutics15041240. [PMID: 37111725 PMCID: PMC10145759 DOI: 10.3390/pharmaceutics15041240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) using Lutetium-177 (177Lu) based radiopharmaceuticals has emerged as a therapeutic area in the field of nuclear medicine and oncology, allowing for personalized medicine. Since the first market authorization in 2018 of [¹⁷⁷Lu]Lu-DOTATATE (Lutathera®) targeting somatostatin receptor type 2 in the treatment of gastroenteropancreatic neuroendocrine tumors, intensive research has led to transfer innovative 177Lu containing pharmaceuticals to the clinic. Recently, a second market authorization in the field was obtained for [¹⁷⁷Lu]Lu-PSMA-617 (Pluvicto®) in the treatment of prostate cancer. The efficacy of 177Lu radiopharmaceuticals are now quite well-reported and data on the safety and management of patients are needed. This review will focus on several clinically tested and reported tailored approaches to enhance the risk-benefit trade-off of radioligand therapy. The aim is to help clinicians and nuclear medicine staff set up safe and optimized procedures using the approved 177Lu based radiopharmaceuticals.
Collapse
Affiliation(s)
- Typhanie Ladrière
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- Department of Pharmacy, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
| | - Julie Faudemer
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
| | - Elise Levigoureux
- Hospices Civils de Lyon, Groupement Hospitalier Est, 69677 Bron, France
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, 69677 Bron, France
| | - Damien Peyronnet
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- Department of Pharmacy, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
| | - Cédric Desmonts
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- INSERM U1086, ANTICIPE, Normandy University, UNICAEN, 14000 Caen, France
| | - Jonathan Vigne
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- Department of Pharmacy, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- PhIND, Centre Cyceron, Institut Blood and Brain @ Caen-Normandie, INSERM U1237, Normandie Université, UNICAEN, 14000 Caen, France
| |
Collapse
|
10
|
Naeem Z, Zahra UB, Numair Younis M, Khan IU, Shahid A. Lutetium-177 Prostate Specific Membrane Antigen Therapy in a Patient With Double Malignancy and Single Functioning Kidney: A Case Report. Cureus 2023; 15:e36938. [PMID: 37131569 PMCID: PMC10148966 DOI: 10.7759/cureus.36938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Lutetium-177 labeled with 617 types of Prostate Specific Membrane Antigen (177Lu PSMA-617) Radio-ligand Therapy (RLT) is an emerging modality of choice for the treatment of metastatic castration-resistant prostate carcinoma (mCRPC). After it is administered intravenously, it is excreted primarily through the kidneys. Physiological excretion and concomitant expression of PSMA receptors on renal tissues are associated with potential renal toxicity, a matter of concern while treating patients with multiple doses of RLT. There are published articles that have demonstrated the safe use of 177Lu PSMA-617 in patients with bilateral fair-functioning kidneys; however, only a single study has been published that has evaluated its safety in patients with solitary-functioning kidneys. The uniqueness of this case report lies in the fact that we have documented the renal safety profile of 177Lu PSMA-617 therapy after multiple doses in a patient who presented with double malignancy (metastatic castration-resistant prostate carcinoma and left renal cell carcinoma) and had a single-functioning right kidney.
Collapse
|
11
|
Calais J, Eulau SM, Gardner L, Hauke RJ, Kendi AT, Shore ND, Zhao S. Incorporating radioligand therapy in clinical practice in the United States for patients with prostate cancer. Cancer Treat Rev 2023; 115:102524. [PMID: 36933329 DOI: 10.1016/j.ctrv.2023.102524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Prostate cancer (PC) is the second most commonly diagnosed cancer in the United States. Advanced PC evolves to metastatic castration-resistant PC (mCRPC). Theranostics combining prostate-specific membrane antigen-targeted positron emission tomography imaging and radioligand therapy (RLT) represents a precision medicine approach to PC treatment. With the recent approval of lutetium Lu 177 (177Lu) vipivotide tetraxetan for men with mCRPC, the utilization of RLT will increase. In this review, we suggest a framework for incorporating RLT for PC into clinical practice. A search of PubMed and Google Scholar was performed using keywords related to PC, RLT, prostate-specific membrane antigen, and novel RLT centers. The authors also provided opinions based on their clinical experience. The setup and operation of an RLT center requires the diligence and cooperation of a well-trained multidisciplinary team committed to patient safety and clinical efficacy. Administrative systems should ensure that treatment scheduling, reimbursement, and patient monitoring are efficient. For optimal outcomes, the clinical care team must have an organizational plan that delineates the full range of required tasks. Establishing new RLT centers for treatment of PC is possible with appropriate multidisciplinary planning. We provide an overview of the key elements to consider when establishing a safe, efficient, and high-quality RLT center.
Collapse
Affiliation(s)
- Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, 650 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| | - Stephen M Eulau
- Swedish Cancer Institute at Swedish Medical Center, 1221 Madison Street, Seattle, WA, USA.
| | - Linda Gardner
- Department of Nuclear Medicine, University of California, Los Angeles, 650 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| | - Ralph J Hauke
- Nebraska Cancer Specialists, 17201 Wright Street, Suite 200, Omaha, NE 68130, USA.
| | - Ayse T Kendi
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - Neal D Shore
- Carolina Urologic Research Center/GenesisCare, US, Myrtle Beach, SC 29572, USA.
| | - Song Zhao
- Swedish Cancer Institute at Swedish Medical Center, 1221 Madison Street, Seattle, WA, USA.
| |
Collapse
|
12
|
Satapathy S, Das CK, Aggarwal P, Sood A, Parihar AS, Singh SK, Mittal BR. Genomic characterization of metastatic castration-resistant prostate cancer patients undergoing PSMA radioligand therapy: A single-center experience. Prostate 2023; 83:169-178. [PMID: 36259290 DOI: 10.1002/pros.24450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Genomic defects in DNA-damage repair (DDR) mechanisms have been proposed to affect the radiosensitivity of prostate cancers. In this study, we intended to evaluate the prevalence of genetic alterations in a cohort of metastatic castration-resistant prostate cancer (mCRPC) patients undergoing radioligand therapy (RLT) with prostate-specific membrane antigen (PSMA)-inhibitors as well as the impact of such mutations on treatment outcomes. METHODS Data of consecutive mCRPC patients from 2017 to 2021 who were treated with PSMA-RLT and underwent next-generation sequencing (NGS) were collected and analyzed for response and survival outcomes. RESULTS In 95 patients of mCRPC treated with PSMA-RLT, 15 patients (median age: 66 years, range: 50-73 years; [177 Lu]Lu-PSMA-617, n = 12; [225 Ac]Ac-PSMA-617, n = 3) underwent NGS. The median progression-free survival (PFS) of this cohort was 3 months (95% confidence interval: 1.6-4.4 months). On NGS, 21 genetic alterations were reported in 10/15 (67%) patients, of which 13 were DDR-associated alterations involving the genes: ATM (n = 3), BRCA2 (n = 3), TP53 (n = 2), PTEN (n = 2), FANCD2 (n = 1), FANCM (n = 1), and NBN (n = 1). Overall, 5/15 (33%) patients harbored six pathogenic variants (BRCA2, n = 2; ATM, n = 1; TP53, n = 1; PTEN, n = 2). No significant difference was noted for the biochemical response, radiological response, PFS, and overall survival between the patients with and without genetic alterations. CONCLUSIONS Patients of mCRPC undergoing PSMA-RLT were frequently seen to harbor DDR-associated aberrations, albeit with no significant impact on treatment outcomes. Large prospective trials comparing PSMA-RLT-related outcomes in DDR-deficient and -proficient patients are required to bring out the differences, if any, in a more observable manner.
Collapse
Affiliation(s)
- Swayamjeet Satapathy
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Chandan K Das
- Department of Clinical Haematology and Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Piyush Aggarwal
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwani Sood
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwin S Parihar
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shrawan K Singh
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bhagwant R Mittal
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
13
|
Zhang X, Son MH, Ha LN, Lan X. PSMA-based 18F-DCFPyL PET: a better choice than multiparametric MRI for prostate cancer diagnosis? AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2022; 12:195-200. [PMID: 36636231 PMCID: PMC9831858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023]
Abstract
Owing to the high tissue contrast, multiparametric MRI (mpMRI) has already been the most widely applied imaging method for prostate cancer. Recently, prostate-specific membrane antigen (PSMA) ligands for nuclear imaging are emerging as a promising modality in prostate cancer, especially since the 2 PET/CT agents (68Ga-PSMA-11 and 18F-DCFPy) approved by U.S. Food and Drug Administration (FDA). However, limited studies have performed the comparison of mpMRI versus recently approved 18F-DCFPyL PET/CT. In this issue of AJNMMI, Lu et al. compared the performance of 18F-DCFPyL PET/CT and pelvic mpMRI in intermediate-high risk and biochemical recurrent prostate cancer patients. The results demonstrated the two modalities have a good concordance rate for patient-based analysis, and 18F-DCFPyL PET/CT has a better diagnostic performance in detecting lymph node metastases and bone metastases for lesion-based analysis. The use of 18F-DCFPyL PET/CT provides more diagnostic confidence to better assess prostate cancer lesions.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Key Laboratory of Molecular ImagingWuhan 430022, Hubei, China
| | - Mai Hong Son
- Department of Nuclear Medicine, Hospital 108Hanoi, Vietnam
| | - Le Ngoc Ha
- Department of Nuclear Medicine, Hospital 108Hanoi, Vietnam
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Hubei Key Laboratory of Molecular ImagingWuhan 430022, Hubei, China
| |
Collapse
|
14
|
Tsai CJ, Chang KW, Yang BH, Wu PH, Lin KH, Wong CYO, Lee HL, Huang WS. Very-Low-Dose Radiation and Clinical Molecular Nuclear Medicine. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060912. [PMID: 35743943 PMCID: PMC9225609 DOI: 10.3390/life12060912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022]
Abstract
Emerging molecular and precision medicine makes nuclear medicine a de facto choice of imaging, especially in the era of target-oriented medical care. Nuclear medicine is minimally invasive, four-dimensional (space and time or dynamic space), and functional imaging using radioactive biochemical tracers in evaluating human diseases on an anatomically configured image. Many radiopharmaceuticals are also used in therapies. However, there have been concerns over the emission of radiation from the radionuclides, resulting in wrongly neglecting the potential benefits against little or any risks at all of imaging to the patients. The sound concepts of radiation and radiation protection are critical for promoting the optimal use of radiopharmaceuticals to patients, and alleviating concerns from caregivers, nuclear medicine staff, medical colleagues, and the public alike.
Collapse
Affiliation(s)
- Chi-Jung Tsai
- Department of Nuclear Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan;
| | - Kang-Wei Chang
- Taipei Neuroscience Institute & Laboratory Animal Center, Taipei Medical University, Taipei 110, Taiwan;
| | - Bang-Hung Yang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (B.-H.Y.); (K.-H.L.)
| | - Ping-Hsiu Wu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei 110, Taiwan
| | - Ko-Han Lin
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (B.-H.Y.); (K.-H.L.)
| | - Ching Yee Oliver Wong
- Department of Radiology, University of Southern California, Los Angeles, CA 90007, USA;
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei 110, Taiwan
- Correspondence: (H.-L.L.); (W.-S.H.); Tel.: +886-2-737-2181 (ext. 3396) (H.-L.L.); +886-2-2826-4400 (W.-S.H.)
| | - Wen-Sheng Huang
- Department of Nuclear Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (B.-H.Y.); (K.-H.L.)
- Department of Nuclear Medicine, Cheng-Hsin General Hospital, No. 45, Cheng-Hsin Street, Beitou District, Taipei 112, Taiwan
- Correspondence: (H.-L.L.); (W.-S.H.); Tel.: +886-2-737-2181 (ext. 3396) (H.-L.L.); +886-2-2826-4400 (W.-S.H.)
| |
Collapse
|