1
|
Andres S, Bartling B, Stiensmeier V, Starke A, Schmicke M. Comparative cryopreservation of bovine and porcine primary hepatocytes. Front Vet Sci 2023; 10:1211135. [PMID: 37614462 PMCID: PMC10442649 DOI: 10.3389/fvets.2023.1211135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 08/25/2023] Open
Abstract
The isolation of primary hepatocytes from liver tissue of farm animals yields a very high number of cells, and a part of them can be stored by cryopreservation for future experiments. As no experience exists with the cryopreservation of hepatocytes from cattle, our study aimed at the cryopreservation of bovine hepatocytes by use of different protocols compared with the cryopreservation of hepatocytes from pig. We tested different freezing media (William's Medium E vs. University of Wisconsin solution), cryoprotectants (dimethyl sulfoxide with vs. without trehalose as additional additive), freezing systems (standard freezing container vs. controlled-rate freezer) and freezing times (4 vs. 28 d). These tests identified a general influence of species and freezing systems, whereas the influence of freezing media, trehalose additive and freezing time was less or not obvious. In this regard, we determined a mean recovery of 30% of bovine hepatocytes and 55% of porcine hepatocytes cryopreserved in a controlled-rate freezer, whereas the rates were about 10% less when hepatocytes were frozen in a standard freezing container. In accordance with this observation, the cultivation of cryopreserved hepatocytes from cattle was less effective than that of porcine hepatocytes. Hepatocytes from cattle can be successfully cryopreserved and partially cultured after cryopreservation but with lower percentage than porcine hepatocytes.
Collapse
Affiliation(s)
- Sandra Andres
- Institute of Agricultural and Nutritional Sciences, Animal Health Management, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Babett Bartling
- Institute of Agricultural and Nutritional Sciences, Animal Health Management, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Vera Stiensmeier
- Institute of Agricultural and Nutritional Sciences, Animal Health Management, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Starke
- Department for Ruminants and Swine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Marion Schmicke
- Institute of Agricultural and Nutritional Sciences, Animal Health Management, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Clinic for Cattle, Endocrinology, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
2
|
Fedor Z, Szentkirályi-Tóth A, Nagy G, Szimrók Z, Varga E, Pászti A, Pászti Z, Jerzsele Á, Pilgram O, Steinmetzer T, Mátis G, Neogrády Z, Pászti-Gere E. Interspecies Comparisons of the Effects of Potential Antiviral 3-Amidinophenylalanine Derivatives on Cytochrome P450 1A2 Isoenzyme. Vet Sci 2022; 9:vetsci9040156. [PMID: 35448654 PMCID: PMC9027957 DOI: 10.3390/vetsci9040156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
In vitro models of animals vulnerable to SARS-CoV-2 infection can support the characterization of effective antiviral drugs, such as synthetic inhibitors of the transmembrane protease serine 2 (TMPRSS2). Changes in cytochrome P450 (CYP) 1A2 activities in the presence of the potential TMPRSS2/matriptase inhibitors (MI) were measured using fluorometric and luminescent assays. Furthermore, the cytotoxicity of these inhibitors was evaluated using the MTS method. In addition, 60 min-long microsomal stability assays were performed using an UPLC-MS/MS procedure to elucidate depletion rates of the inhibitors. CYP1A2 was influenced significantly by MI-463 and MI-1900 in rat microsomes, by MI-432 and MI-482 in beagle microsomes, and by MI-432, MI-463, MI-482, and MI-1900 in cynomolgus monkey microsomes. The IC50 values in monkey microsomes were 1.30 ± 0.14 µM, 2.4 ± 1.4 µM, 0.21 ± 0.09 µM, and 1.1 ± 0.8 µM for inhibitors MI-432, MI-463, MI-482, and MI-1900, respectively. The depletion rates of the parent compounds were lower than 50%, independently of the investigated animal species. The host cell factor TMPRSS2 is of key importance for the cross-species spread of SARS-CoV-2. Studies of the in vitro biotransformation of TMPRSS2 inhibitors provide additional information for the development of new antiviral drugs.
Collapse
Affiliation(s)
- Zsófia Fedor
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (Z.F.); (A.S.-T.); (G.N.); (Z.S.); (E.V.); (A.P.); (Á.J.)
| | - Anna Szentkirályi-Tóth
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (Z.F.); (A.S.-T.); (G.N.); (Z.S.); (E.V.); (A.P.); (Á.J.)
| | - Gábor Nagy
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (Z.F.); (A.S.-T.); (G.N.); (Z.S.); (E.V.); (A.P.); (Á.J.)
| | - Zoltán Szimrók
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (Z.F.); (A.S.-T.); (G.N.); (Z.S.); (E.V.); (A.P.); (Á.J.)
| | - Eszter Varga
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (Z.F.); (A.S.-T.); (G.N.); (Z.S.); (E.V.); (A.P.); (Á.J.)
| | - Anna Pászti
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (Z.F.); (A.S.-T.); (G.N.); (Z.S.); (E.V.); (A.P.); (Á.J.)
| | - Zoltán Pászti
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, 1117 Budapest, Hungary;
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (Z.F.); (A.S.-T.); (G.N.); (Z.S.); (E.V.); (A.P.); (Á.J.)
| | - Oliver Pilgram
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35037 Marburg, Germany; (O.P.); (T.S.)
| | - Torsten Steinmetzer
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35037 Marburg, Germany; (O.P.); (T.S.)
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, 1078 Budapest, Hungary; (G.M.); (Z.N.)
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, 1078 Budapest, Hungary; (G.M.); (Z.N.)
| | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary; (Z.F.); (A.S.-T.); (G.N.); (Z.S.); (E.V.); (A.P.); (Á.J.)
- Correspondence:
| |
Collapse
|