1
|
Zhu S, He J, Yin L, Zhou J, Lian J, Ren Y, Zhang X, Yuan J, Wang G, Li X. Matrix metalloproteinases targeting in prostate cancer. Urol Oncol 2024; 42:275-287. [PMID: 38806387 DOI: 10.1016/j.urolonc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/07/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Prostate cancer (PCa) is one of the most common tumors affecting men all over the world. PCa has brought a huge health burden to men around the world, especially for elderly men, but its pathogenesis is unclear. In prostate cancer, epigenetic inheritance plays an important role in the development, progression, and metastasis of the disease. An important role in cancer invasion and metastasis is played by matrix metalloproteinases (MMPs), zinc-dependent proteases that break down extracellular matrix. We review two important forms of epigenetic modification and the role of matrix metalloproteinases in tumor regulation, both of which may be of significant value as novel biomarkers for early diagnosis and prognosis monitoring. The author considers that both mechanisms have promising therapeutic applications for therapeutic agent research in prostate cancer, but that efforts should be made to mitigate or eliminate the side effects of drug therapy in order to maximize quality of life of patients. The understanding of epigenetic modification, MMPs, and their inhibitors in the functional regulation of prostate cancer is gradually advancing, it will provide a new technical means for the prevention of prostate cancer, early diagnosis, androgen-independent prostate cancer treatment, and drug research.
Collapse
Affiliation(s)
- Shuying Zhu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jing He
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Liliang Yin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jiawei Zhou
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jiayi Lian
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xinling Zhang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jinghua Yuan
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Gang Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Xiaoping Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China.
| |
Collapse
|
2
|
Sampaio Moura N, Schledwitz A, Alizadeh M, Patil SA, Raufman JP. Matrix metalloproteinases as biomarkers and therapeutic targets in colitis-associated cancer. Front Oncol 2024; 13:1325095. [PMID: 38288108 PMCID: PMC10824561 DOI: 10.3389/fonc.2023.1325095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Colorectal cancer (CRC) remains a major cause of morbidity and mortality. Therapeutic approaches for advanced CRC are limited and rarely provide long-term benefit. Enzymes comprising the 24-member matrix metalloproteinase (MMP) family of zinc- and calcium-dependent endopeptidases are key players in extracellular matrix degradation, a requirement for colon tumor expansion, invasion, and metastasis; hence, MMPs are an important research focus. Compared to sporadic CRC, less is known regarding the molecular mechanisms and the role of MMPs in the development and progression of colitis-associated cancer (CAC) - CRC on a background of chronic inflammatory bowel disease (IBD) - primarily ulcerative colitis and Crohn's disease. Hence, the potential of MMPs as biomarkers and therapeutic targets for CAC is uncertain. Our goal was to review data regarding the role of MMPs in the development and progression of CAC. We sought to identify promising prognostic and therapeutic opportunities and novel lines of investigation. A key observation is that since MMPs may be more active in early phases of CAC, using MMPs as biomarkers of advancing neoplasia and as potential therapeutic targets for adjuvant therapy in those with advanced stage primary CAC rather than overt metastases may yield more favorable outcomes.
Collapse
Affiliation(s)
- Natalia Sampaio Moura
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alyssa Schledwitz
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Madeline Alizadeh
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Seema A. Patil
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
- Medical Service, Veterans Affairs Maryland Healthcare System, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Li Y, Tang M, Zhang FJ, Huang Y, Zhang J, Li J, Wang Y, Yang J, Zhu S. Screening of ulcerative colitis biomarkers and potential pathways based on weighted gene co-expression network, machine learning and ceRNA hypothesis. Hereditas 2022; 159:42. [PMID: 36419192 PMCID: PMC9685902 DOI: 10.1186/s41065-022-00259-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/12/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC) refers to an intractable intestinal inflammatory disease. Its increasing incidence rate imposes a huge burden on patients and society. The UC etiology has not been determined, so screening potential biomarkers is critical to preventing disease progression and selecting optimal therapeutic strategies more effectively. METHODS The microarray datasets of intestinal mucosal biopsy of UC patients were selected from the GEO database, and integrated with R language to screen differentially expressed genes and draw proteins interaction network diagrams. GO, KEGG, DO and GSEA enrichment analyses were performed to explore their biological functions. Through machine learning and WGCNA analysis, targets that can be used as UC potential biomarkers are screened out. ROC curves were drawn to verify the reliability of the results and predicted the mechanism of marker genes from the aspects of immune cell infiltration, co-expression analysis, and competitive endogenous network (ceRNA). RESULTS Two datasets GSE75214 and GSE87466 were integrated for screening, and a total of 107 differentially expressed genes were obtained. They were mainly related to biological functions such as humoral immune response and inflammatory response. Further screened out five marker genes, and found that they were associated with M0 macrophages, quiescent mast cells, M2 macrophages, and activated NK cells in terms of immune cell infiltration. The co-expression network found significant co-expression relationships between 54 miRNAs and 5 marker genes. According to the ceRNA hypothesis, NEAT1-miR-342-3p/miR-650-SLC6A14, NEAT1-miR-650-IRAK3, and XIST-miR-342-3p-IRAK3 axes were found as potential regulatory pathways in UC. CONCLUSION This study screened out five biomarkers that can be used for the diagnosis and treatment of UC, namely SLC6A14, TIMP1, IRAK3, HMGCS2, and APOBEC3B. Confirmed that they play a role in the occurrence and development of UC at the level of immune infiltration, and proposed a potential RNA regulatory pathway that controls the progression of UC.
Collapse
Affiliation(s)
- Ying Li
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Jinan, China ,grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, The First College for Clinical Medicine, Jinan, China
| | - Mengyao Tang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, College of Innovation and Research of Traditional Chinese Medicine, Jinan, 250000 China
| | - Feng Jun Zhang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Jinan, China ,grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, The First College for Clinical Medicine, Jinan, China
| | - Yihan Huang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Jinan, China
| | - Jing Zhang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Jinan, China
| | - Junqi Li
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Jinan, China
| | - Yunpeng Wang
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Gastroenterology, Jinan, China
| | - Jinguang Yang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, The First College for Clinical Medicine, Jinan, China
| | - Shu Zhu
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, College of Innovation and Research of Traditional Chinese Medicine, Jinan, 250000 China
| |
Collapse
|
4
|
A CAF-Fueled TIMP-1/CD63/ITGB1/STAT3 Feedback Loop Promotes Migration and Growth of Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14204983. [PMID: 36291767 PMCID: PMC9599197 DOI: 10.3390/cancers14204983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Carcinoma-associated fibroblasts (CAFs) are a major cellular component of the tumor microenvironment and influence cancer cell behavior in numerous ways. A large part of their actions is based on their high secretory activity, leading to the exposure of cancer cells to all kinds of bioactive factors, such as interleukin-6 (IL-6). Here, we present data showing that CAF-derived TIMP-1 activates STAT3 in breast cancer cells in cooperation with CD63 and integrin β1. In turn, STAT3 increases TIMP-1 secretion by breast cancer cells, leading to a TIMP-1/CD63/integrin β1/STAT3 positive feedback loop, which can be further fueled by IL-6. Functionally, this feedback loop is important for the CAF-induced increase in migratory activity and for CAF-induced resistance to the anti-estrogen fulvestrant. Abstract TIMP-1 is one of the many factors that CAFs have been shown to secret. TIMP-1 can act in a tumor-supportive or tumor-suppressive manner. The purpose of this study was to elucidate the role of CAF-secreted TIMP-1 for the effects of CAFs on breast cancer cell behavior. Breast cancer cells were exposed to conditioned medium collected from TIMP-1-secreting CAFs (CAF-CM), and the specific effects of TIMP-1 on protein expression, migration and growth were examined using TIMP-1-specifc siRNA (siTIMP1), recombinant TIMP-1 protein (rhTIMP-1) and TIMP-1 level-rising phorbol ester. We observed that TIMP-1 increased the expression of its binding partner CD63 and induced STAT3 and ERK1/2 activation by cooperating with CD63 and integrin β1. Since TIMP-1 expression was found to be dependent on STAT3, TIMP-1 activated its own expression, resulting in a TIMP-1/CD63/integrin β1/STAT3 feedback loop. IL-6, a classical STAT3 activator, further fueled this loop. Knock-down of each component of the feedback loop prevented the CAF-induced increase in migratory activity and inhibited cellular growth in adherent cultures in the presence and absence of the anti-estrogen fulvestrant. These data show that TIMP-1/CD63/integrin β1/STAT3 plays a role in the effects of CAFs on breast cancer cell behavior.
Collapse
|
5
|
Guo Y, Wang M, Zou Y, Jin L, Zhao Z, Liu Q, Wang S, Li J. Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J Nanobiotechnology 2022; 20:371. [PMID: 35953863 PMCID: PMC9367166 DOI: 10.1186/s12951-022-01586-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer is considered one of the major malignancies that threaten the lives and health of people around the world. Patients with CRC are prone to post-operative local recurrence or metastasis, and some patients are advanced at the time of diagnosis and have no chance for complete surgical resection. These factors make chemotherapy an indispensable and important tool in treating CRC. However, the complex composition of the tumor microenvironment and the interaction of cellular and interstitial components constitute a tumor tissue with high cell density, dense extracellular matrix, and high osmotic pressure, inevitably preventing chemotherapeutic drugs from entering and acting on tumor cells. As a result, a novel drug carrier system with targeted nanoparticles has been applied to tumor therapy. It can change the physicochemical properties of drugs, facilitate the crossing of drug molecules through physiological and pathological tissue barriers, and increase the local concentration of nanomedicines at lesion sites. In addition to improving drug efficacy, targeted nanoparticles also reduce side effects, enabling safer and more effective disease diagnosis and treatment and improving bioavailability. In this review, we discuss the mechanisms by which infiltrating cells and other stromal components of the tumor microenvironment comprise barriers to chemotherapy in colorectal cancer. The research and application of targeted nanoparticles in CRC treatment are also classified.
Collapse
Affiliation(s)
- Yu Guo
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Min Wang
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Yongbo Zou
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Longhai Jin
- Department of Radiology, Jilin University Second Hospital, Changchun, 130000, China
| | - Zeyun Zhao
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Qi Liu
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Shuang Wang
- Department of the Dermatology, Jilin University Second Hospital, Changchun, 130000, China.
| | - Jiannan Li
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China.
| |
Collapse
|
6
|
Cui Y, Jiang N. Identification of a seven-gene signature predicting clinical outcome of liver cancer based on tumor mutational burden. Hum Cell 2022; 35:1192-1206. [PMID: 35622212 DOI: 10.1007/s13577-022-00708-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022]
Abstract
The total number of somatic mutations may affect the prognosis of cancer, so we applied bioinformatics methods to investigate the association between the TMB (tumor mutational burden)-related differentially expressed genes (DEGs) and the prognosis of hepatocellular carcinoma (HCC). We calculated the TMB value of the patients with HCC in TCGA database and identified the differentially expressed genes between the high-TMB and low-TMB patients. We performed functional enrichment analysis and LASSO Cox regression analysis of the DEGs, and seven genes were screened to establish a risk score model. A nomogram based on the risk scores was drawn to assess the predictive outcomes compared to the actual outcomes. The expression level of the seven genes was verified in cancer cell lines. Moreover, we explored the difference in immune cells infiltration and immune checkpoints between the high-risk and low-risk groups. The results showed that the DEGs between the high-TMB and low-TMB patients were enriched in extracellular matrix organization. A seven-gene risk score model (PAGE1, CHGA, OGN, MMP7, TRIM55, MAGEA6, and MAGEA12) was established for predicting HCC prognosis. Patients with lower risk scores had longer survival time and lower mortality rate. The nomogram based on risk scores and TNM staging showed good performance and reliability in predicting the clinical outcomes. Significant differences in cell infiltration and checkpoints were found between the high-risk and low-risk groups. Our study demonstrated a seven-gene signature and a nomogram based on the risk score model to predict the prognosis of HCC. Some of the newly identified DEGs may be potential biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Yunlong Cui
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, People's Republic of China
| | - Ning Jiang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, 301617, Tianjin, People's Republic of China.
| |
Collapse
|
7
|
Li M, Li S, Zhou L, Yang L, Wu X, Tang B, Xie S, Fang L, Zheng S, Hong T. Immune Infiltration of MMP14 in Pan Cancer and Its Prognostic Effect on Tumors. Front Oncol 2021; 11:717606. [PMID: 34604053 PMCID: PMC8484967 DOI: 10.3389/fonc.2021.717606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background Matrix metalloproteinase 14 (MMP14) is a member of the MMP family, which interacts with tissue inhibitors of metalloproteinase (TIMPs), and is involved in normal physiological functions such as cell migration, invasion, metastasis, angiogenesis, and proliferation, as well as tumor genesis and progression. However, there has been a lack of relevant reports on the effect of MMP14 across cancers. This study aims to explore the correlation between MMP14 and pan-cancer prognosis, immune infiltration, and the effects of pan-cancer gene mismatch repair (MMR), microsatellite instability (MSI), tumor mutational burden (TMB), DNA methylation, and immune checkpoint genes. Methods In this study, we used bioinformatics to analyze data from multiple databases, including The Cancer Genome Atlas (TCGA), ONCOMINE, and Kaplan–Meier plotter. We investigated the relationship between the expression of MMP14 in tumors and tumor prognosis, the relationship between MMP14 expression and tumor cell immune infiltration, and the relationship between MMR gene MMR, MSI, TMB, DNA methylation, and immune checkpoint genes. Results MMP14 expression is highly associated with the prognosis of a variety of cancers and tumor immune invasion and has important effects on pan oncologic MMR, MSI, TMB, DNA methylation, and immune checkpoint genes. Conclusion MMP14 is highly correlated with tumor prognosis and immune invasion and affects the occurrence and progression of many tumors. All of these results fully indicate that MMP14 may be a biomarker for the prognosis, diagnosis, and treatment of many tumors and provide new ideas and direction for subsequent tumor immune research and treatment strategies.
Collapse
Affiliation(s)
- Minde Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shaoyang Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Le Yang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shenhao Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linchun Fang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Suyue Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|