1
|
Chen J, Liu Y, Luo H, Chen G, Zheng Z, Wang T, Hu X, Zhao Y, Tang J, Su C, Zha L. Inflammation Induced by Lipopolysaccharide and Palmitic Acid Increases Cholesterol Accumulation via Enhancing Myeloid Differentiation Factor 88 Expression in HepG2 Cells. Pharmaceuticals (Basel) 2022; 15:813. [PMID: 35890112 PMCID: PMC9322353 DOI: 10.3390/ph15070813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, multiple studies have shown that chronic inflammation disturbs cholesterol homeostasis and promotes its accumulation in the liver. The underlying molecular mechanism remains to be revealed. The relationship between the toll-like receptor 4 (TLR4) inflammatory signaling pathway and cholesterol accumulation was investigated in HepG2 cells treated with lipopolysaccharide (LPS) or palmitic acid (PA) for different lengths of time. In addition, the effects of pretreatment with 20μmol/L ST2825 (MyD88 inhibitor) were also studied in LPS- or PA-treated HepG2 cells and myeloid differentiation factor 88 (MyD88)-overexpressing HEK293T cells. The intracellular total and free cholesterol levels were measured using a commercial kit and filipin staining, respectively. The expression levels of sterol regulatory element-binding protein-2 (SREBP-2) and components in the TLR4 signaling pathway were determined using Western blotting. The treatments with LPS for 12 h and with PA for 24 h significantly increased the contents of intracellular total and free cholesterol, as well as the expression levels of SREBP-2 and components in the TLR4 signaling pathway. The inhibition of MyD88 by ST2825 significantly decreased the cholesterol content and the expression levels of SREBP-2 and components of the TLR4/MyD88/NF-κB pathway in HepG2 cells, as well as MyD88-overexpressing HEK293T cells. These results indicated that LPS and PA treatments increase SREBP-2-mediated cholesterol accumulation via the activation of the TLR4/MyD88/NF-κB signaling pathway in HepG2 cells.
Collapse
Affiliation(s)
- Junbin Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (J.C.); (Y.L.); (H.L.); (Z.Z.); (Y.Z.); (J.T.); (C.S.)
| | - Yuguo Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (J.C.); (Y.L.); (H.L.); (Z.Z.); (Y.Z.); (J.T.); (C.S.)
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (J.C.); (Y.L.); (H.L.); (Z.Z.); (Y.Z.); (J.T.); (C.S.)
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (G.C.); (T.W.); (X.H.)
| | - Zhongdaixi Zheng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (J.C.); (Y.L.); (H.L.); (Z.Z.); (Y.Z.); (J.T.); (C.S.)
| | - Tiannan Wang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (G.C.); (T.W.); (X.H.)
| | - Xinge Hu
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (G.C.); (T.W.); (X.H.)
| | - Yue Zhao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (J.C.); (Y.L.); (H.L.); (Z.Z.); (Y.Z.); (J.T.); (C.S.)
| | - Jiaqi Tang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (J.C.); (Y.L.); (H.L.); (Z.Z.); (Y.Z.); (J.T.); (C.S.)
| | - Chuhong Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (J.C.); (Y.L.); (H.L.); (Z.Z.); (Y.Z.); (J.T.); (C.S.)
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (J.C.); (Y.L.); (H.L.); (Z.Z.); (Y.Z.); (J.T.); (C.S.)
| |
Collapse
|
2
|
Groenen AG, La Rose AM, Li M, Bazioti V, Svendsen AF, Kloosterhuis NJ, Ausema A, Pranger A, Heiner-Fokkema MR, Niezen-Koning KE, Houben T, Shiri-Sverdlov R, Westerterp M. Elevated granulocyte-colony stimulating factor and hematopoietic stem cell mobilization in Niemann-Pick type C1 disease. J Lipid Res 2022; 63:100167. [PMID: 35007562 PMCID: PMC8953690 DOI: 10.1016/j.jlr.2021.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is a progressive lysosomal storage disorder caused by mutations of the NPC1 gene. While neurodegeneration is the most severe symptom, a large proportion of NPC1 patients also present with splenomegaly, which has been attributed to cholesterol and glycosphingolipid accumulation in late endosomes and lysosomes. However, recent data also reveal an increase in the inflammatory monocyte subset in the Npc1nih mouse model expressing an Npc1 null allele. We evaluated the contribution of hematopoietic cells to splenomegaly in NPC1 disease under conditions of hypercholesterolemia. We transplanted Npc1nih (Npc1 null mutation) or Npc1wt bone marrow (BM) into Ldlr-/- mice and fed these mice a cholesterol-rich Western-type diet. At 9 weeks after BM transplant, on a chow diet, the Npc1 null mutation increased plasma granulocyte-colony stimulating factor (G-CSF) by 2-fold and caused mild neutrophilia. At 18 weeks after BM transplant, including 9 weeks of Western-type diet feeding, the Npc1 mutation increased G-csf mRNA levels by ∼5-fold in splenic monocytes/macrophages accompanied by a ∼4-fold increase in splenic neutrophils compared with controls. We also observed ∼5-fold increased long-term and short-term hematopoietic stem cells (HSCs) in the spleen, and a ∼30-75% decrease of these populations in BM, reflecting HSC mobilization, presumably downstream of elevated G-CSF. In line with these data, four patients with NPC1 disease showed higher plasma G-CSF compared with age-matched and gender-matched healthy controls. In conclusion, we show elevated G-CSF levels and HSC mobilization in the setting of an Npc1 null mutation and propose that this contributes to splenomegaly in patients with NPC1 disease.
Collapse
Affiliation(s)
- Anouk G Groenen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anouk M La Rose
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mengying Li
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Venetia Bazioti
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arthur F Svendsen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albertina Ausema
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alle Pranger
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klary E Niezen-Koning
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tom Houben
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Houben T, Yadati T, de Kruijf R, Gijbels MJJ, Luiken JJFP, van Zandvoort M, Kapsokalyvas D, Lütjohann D, Westerterp M, Plat J, Leake D, Shiri-Sverdlov R. Pro-Inflammatory Implications of 2-Hydroxypropyl-β-cyclodextrin Treatment. Front Immunol 2021; 12:716357. [PMID: 34489968 PMCID: PMC8417873 DOI: 10.3389/fimmu.2021.716357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022] Open
Abstract
Lifestyle- and genetically induced disorders related to disturbances in cholesterol metabolism have shown the detrimental impact of excessive cholesterol levels on a plethora of pathological processes such as inflammation. In this context, two-hydroxypropyl-β-cyclodextrin (CD) is increasingly considered as a novel pharmacological compound to decrease cellular cholesterol levels due to its ability to increase cholesterol solubility. However, recent findings have reported contra-indicating events after the use of CD questioning the clinical applicability of this compound. Given its potential as a therapeutic compound in metabolic inflammatory diseases, in this study, we evaluated the inflammatory effects of CD administration in the context of cholesterol-induced metabolic inflammation in vivo and in vitro. The inflammatory and cholesterol-depleting effects of CD were first investigated in low-density lipoprotein receptor knockout (Ldlr-/) mice that were transplanted with Npc1nih or Npc1wt bone marrow and were fed either regular chow or a high-fat, high-cholesterol (HFC) diet for 12 weeks, thereby creating an extreme model of lysosomal cholesterol-induced metabolic inflammation. In the final three weeks, these mice received daily injections of either control (saline) or CD subcutaneously. Subsequently, the inflammatory properties of CD were investigated in vitro in two macrophage cell lines and in murine bone marrow-derived macrophages (BMDMs). While CD administration improved cholesterol mobilization outside lysosomes in BMDMs, an overall pro-inflammatory profile was observed after CD treatment, evidenced by increased hepatic inflammation in vivo and a strong increase in cytokine release and inflammatory gene expression in vitro in murine BMDMs and macrophages cell lines. Nevertheless, this CD-induced pro-inflammatory profile was time-dependent, as short term exposure to CD did not result in a pro-inflammatory response in BMDM. While CD exerts desired cholesterol-depleting effects, its inflammatory effect is dependent on the exposure time. As such, using CD in the clinic, especially in a metabolic inflammatory context, should be closely monitored as it may lead to undesired, pro-inflammatory side effects.
Collapse
Affiliation(s)
- Tom Houben
- Departments of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, Netherlands
| | - Tulasi Yadati
- Departments of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, Netherlands
| | - Robbin de Kruijf
- Departments of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, Netherlands
| | - Marion J J Gijbels
- Departments of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, Netherlands
| | - Joost J F P Luiken
- Departments of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, Netherlands
| | - Marc van Zandvoort
- Departments of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, Netherlands.,School for Oncology and Developmental Biology GROW, School of Nutrition and Translational Research in Metabolism (NUTRIM) and School for Cardiovascular Diseases CARIM Maastricht University, Maastricht, Netherlands.,Institute for Molecular Cardiovascular Research IMCAR, Rheinisch-Westfälische Technische Hogeschool (RWTH) Aachen University, Aachen, Germany
| | - Dimitris Kapsokalyvas
- Departments of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, Netherlands.,School for Oncology and Developmental Biology GROW, School of Nutrition and Translational Research in Metabolism (NUTRIM) and School for Cardiovascular Diseases CARIM Maastricht University, Maastricht, Netherlands.,Institute for Molecular Cardiovascular Research IMCAR, Rheinisch-Westfälische Technische Hogeschool (RWTH) Aachen University, Aachen, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Marit Westerterp
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - David Leake
- School of Biological Sciences, University of Reading, Health and Life Sciences Building, Whiteknights, Reading, United Kingdom
| | - Ronit Shiri-Sverdlov
- Departments of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, Netherlands
| |
Collapse
|