1
|
Poudel BH, Fletcher S, Wilton SD, Aung-Htut M. Limb Girdle Muscular Dystrophy Type 2B (LGMD2B): Diagnosis and Therapeutic Possibilities. Int J Mol Sci 2024; 25:5572. [PMID: 38891760 PMCID: PMC11171558 DOI: 10.3390/ijms25115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Dysferlin is a large transmembrane protein involved in critical cellular processes including membrane repair and vesicle fusion. Mutations in the dysferlin gene (DYSF) can result in rare forms of muscular dystrophy; Miyoshi myopathy; limb girdle muscular dystrophy type 2B (LGMD2B); and distal myopathy. These conditions are collectively known as dysferlinopathies and are caused by more than 600 mutations that have been identified across the DYSF gene to date. In this review, we discuss the key molecular and clinical features of LGMD2B, the causative gene DYSF, and the associated dysferlin protein structure. We also provide an update on current approaches to LGMD2B diagnosis and advances in drug development, including splice switching antisense oligonucleotides. We give a brief update on clinical trials involving adeno-associated viral gene therapy and the current progress on CRISPR/Cas9 mediated therapy for LGMD2B, and then conclude by discussing the prospects of antisense oligomer-based intervention to treat selected mutations causing dysferlinopathies.
Collapse
Affiliation(s)
- Bal Hari Poudel
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
| | - May Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
2
|
Ham KA, Johnsen RD, Tchan M, Wilton SD, Aung-Htut MT. Developing Therapeutic Splice-Correcting Antisense Oligomers for Adult-Onset Pompe Disease with c.-32-13T>G Mutation. Methods Mol Biol 2022; 2587:239-251. [PMID: 36401034 DOI: 10.1007/978-1-0716-2772-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mutation c.-32-13T>G in the GAA gene impacts normal exon 2 splicing and is found in two-thirds of late-onset Pompe disease cases. We have explored a therapeutic strategy using splice modulating phosphorodiamidate morpholino oligomers to enhance GAA exon 2 inclusion in the mature mRNA of patients carrying this common mutation. We performed in silico analysis of the GAA gene transcript for potential splicing silencers and designed oligomers targeting motifs predicted to enhance exon 2 retention in the mature mRNA. Two patient-derived fibroblasts were obtained from Coriell Institute for Medical Research, and seven fibroblast strains from unrelated patients were supplied by Westmead Hospital in Sydney, Australia. Both fibroblasts and forced-myogenic cells were treated with optimized phosphorodiamidate morpholino oligomers supplied by Sarepta Therapeutics. Total RNA and protein were extracted from the cells after incubation with phosphorodiamidate morpholino oligomers, and RT-PCR and RT-qPCR were performed to confirm exon 2 inclusion is enhanced. Acid α-glucosidase activity and expression levels were also assessed to confirm therapeutic potential.
Collapse
Affiliation(s)
- Kristin A Ham
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Crawley, WA, Australia
| | - Russell D Johnsen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Crawley, WA, Australia
| | - Michel Tchan
- Genetic Medicine, Westmead Hospital, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Crawley, WA, Australia
| | - May T Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia. .,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia. .,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
3
|
Jurek B, Denk L, Schäfer N, Salehi MS, Pandamooz S, Haerteis S. Oxytocin accelerates tight junction formation and impairs cellular migration in 3D spheroids: evidence from Gapmer-induced exon skipping. Front Cell Neurosci 2022; 16:1000538. [PMID: 36263085 PMCID: PMC9574052 DOI: 10.3389/fncel.2022.1000538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Oxytocin (OXT) is a neuropeptide that has been associated with neurological diseases like autism, a strong regulating activity on anxiety and stress-related behavior, physiological effects during pregnancy and parenting, and various cellular effects in neoplastic tissue. In this study, we aimed to unravel the underlying mechanism that OXT employs to regulate cell-cell contacts, spheroid formation, and cellular migration in a 3D culture model of human MLS-402 cells. We have generated a labeled OXT receptor (OXTR) overexpressing cell line cultivated in spheroids that were treated with the OXTR agonists OXT, Atosiban, and Thr4-Gly7-oxytocin (TGOT); with or without a pre-treatment of antisense oligos (Gapmers) that induce exon skipping in the human OXTR gene. This exon skipping leads to the exclusion of exon 4 and therefore a receptor that lost its intracellular G-protein-binding domain. Sensitive digital PCR (dPCR) provided us with the means to differentiate between wild type and truncated OXTR in our cellular model. OXTR truncation differentially activated intracellular signaling cascades related to cell-cell attachment and proliferation like Akt, ERK1/2-RSK1/2, HSP27, STAT1/5, and CREB, as assessed by a Kinase Profiler Assay. Digital and transmission electron microscopy revealed increased tight junction formation and well-organized cellular protrusions into an enlarged extracellular space after OXT treatment, resulting in increased cellular survival. In summary, OXT decreases cellular migration but increases cell-cell contacts and therefore improves nutrient supply. These data reveal a novel cellular effect of OXT that might have implications for degenerating CNS diseases and tumor formation in various tissues.
Collapse
Affiliation(s)
- Benjamin Jurek
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lucia Denk
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Nicole Schäfer
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), Bio Park 1, University of Regensburg, Regensburg, Germany
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- *Correspondence: Silke Haerteis
| |
Collapse
|
4
|
Flynn LL, Li R, Pitout IL, Aung-Htut MT, Larcher LM, Cooper JAL, Greer KL, Hubbard A, Griffiths L, Bond CS, Wilton SD, Fox AH, Fletcher S. Single Stranded Fully Modified-Phosphorothioate Oligonucleotides can Induce Structured Nuclear Inclusions, Alter Nuclear Protein Localization and Disturb the Transcriptome In Vitro. Front Genet 2022; 13:791416. [PMID: 35464859 PMCID: PMC9019733 DOI: 10.3389/fgene.2022.791416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/02/2022] [Indexed: 01/12/2023] Open
Abstract
Oligonucleotides and nucleic acid analogues that alter gene expression are now showing therapeutic promise in human disease. Whilst the modification of synthetic nucleic acids to protect against nuclease degradation and to influence drug function is common practice, such modifications may also confer unexpected physicochemical and biological properties. Gapmer mixed-modified and DNA oligonucleotides on a phosphorothioate backbone can bind non-specifically to intracellular proteins to form a variety of toxic inclusions, driven by the phosphorothioate linkages, but also influenced by the oligonucleotide sequence. Recently, the non-antisense or other off-target effects of 2′ O- fully modified phosphorothioate linkage oligonucleotides are becoming better understood. Here, we report chemistry-specific effects of oligonucleotides composed of modified or unmodified bases, with phosphorothioate linkages, on subnuclear organelles and show altered distribution of nuclear proteins, the appearance of highly stable and strikingly structured nuclear inclusions, and disturbed RNA processing in primary human fibroblasts and other cultured cells. Phosphodiester, phosphorodiamidate morpholino oligomers, and annealed complimentary phosphorothioate oligomer duplexes elicited no such consequences. Disruption of subnuclear structures and proteins elicit severe phenotypic disturbances, revealed by transcriptomic analysis of transfected fibroblasts exhibiting such disruption. Our data add to the growing body of evidence of off-target effects of some phosphorothioate nucleic acid drugs in primary cells and suggest alternative approaches to mitigate these effects.
Collapse
Affiliation(s)
- Loren L Flynn
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.,Black Swan Pharmaceuticals, Wake Forest, NC, United States
| | - Ruohan Li
- Cell and Tissue Therapies WA, Royal Perth Hospital, Perth, WA, Australia.,School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Ianthe L Pitout
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,PYC Therapeutics, Nedlands, WA, Australia
| | - May T Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Leon M Larcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Jack A L Cooper
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Kane L Greer
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Alysia Hubbard
- Centre for Microscopy, Characterization and Analysis, The University of Western Australia, Nedlands, WA, Australia
| | - Lisa Griffiths
- Anatomical Pathology, Department of Health, Nedlands, WA, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Archa H Fox
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia.,School of Molecular Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.,PYC Therapeutics, Nedlands, WA, Australia
| |
Collapse
|