1
|
Jin L, Hwang B, Rezapourdamanab S, Sridhar V, Nandwani R, Amoli MS, Serpooshan V. Bioengineering Approaches to In Vitro Modeling of Genetic and Acquired Cardiac Diseases. Curr Cardiol Rep 2025; 27:72. [PMID: 40111543 PMCID: PMC11926001 DOI: 10.1007/s11886-025-02218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE OF REVIEW This review aims to explore recent advancements in bioengineering approaches used in developing and testing in vitro cardiac disease models. It seeks to find out how these tools can address the limitations of traditional in vitro models and be applied to improve our understanding of cardiac disease mechanisms, facilitate preclinical drug screening, and equip the development of personalized therapeutics. RECENT FINDINGS Human induced pluripotent stem cells have enabled the generation of diverse cardiac cell types and patient-specific models. Techniques like 3D tissue engineering, heart-on-a-chip platforms, biomechanical conditioning, and CRISPR-based gene editing have enabled faithful recreation of complex cardiac microenvironments and disease conditions. These models have advanced the study of both genetic and acquired cardiac disorders. Bioengineered in vitro models are transforming the basic science and clinical research in cardiovascular disease by improving the biomimicry and complexity of tissue analogues, increasing throughput and reproducibility of screening platforms, as well as offering patient and disease specificity. Despite challenges in scalability and functional maturity, integrating multiple bioengineering techniques with advanced analytical tools in in vitro modeling platforms holds promise for future precision and personalized medicine and therapeutic innovations.
Collapse
Affiliation(s)
- Linqi Jin
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Sarah Rezapourdamanab
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Vani Sridhar
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Roshni Nandwani
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Mehdi Salar Amoli
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Children's Healthcare of Atlanta, 1075 Haygood Dr., Suite N425, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Huang Z, Jia K, Tan Y, Yu Y, Xiao W, Zhou X, Yi J, Zhang C. Advances in cardiac organoid research: implications for cardiovascular disease treatment. Cardiovasc Diabetol 2025; 24:25. [PMID: 39827092 PMCID: PMC11743075 DOI: 10.1186/s12933-025-02598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Globally, cardiovascular diseases remain among the leading causes of mortality, highlighting the urgent need for innovative research models. Consequently, the development of accurate models that simulate cardiac function holds significant scientific and clinical value for both disease research and therapeutic interventions. Cardiac organoids, which are three-dimensional structures derived from the induced differentiation of stem cells, are particularly promising. These organoids not only replicate the autonomous beating and essential electrophysiological properties of the heart but are also widely employed in studies related to cardiac diseases, drug efficacy testing, and regenerative medicine. This review comprehensively surveys the various fabrication techniques used to create cardiac organoids and their diverse applications in modeling a range of cardiac diseases. We emphasize the role of advanced technologies in enhancing the maturation and functionality of cardiac cells, ensuring that these models closely resemble native cardiac tissue. Furthermore, we discuss monitoring techniques and evaluation parameters critical for assessing the performance of cardiac organoids, considering the complex interactions within multi-organ systems. This approach is vital for enhancing precision and efficiency in drug development, allowing for more effective therapeutic strategies. Ultimately, this review aims to provide a thorough and innovative perspective on both fundamental research and clinical treatment of cardiovascular diseases, offering insights that could pave the way for future advancements in understanding and addressing these prevalent health challenges.
Collapse
Affiliation(s)
- Ziteng Huang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Keran Jia
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yadan Tan
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yang Yu
- Department of Cardiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wudian Xiao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiangyu Zhou
- Department of Thyroid Surgery, The Affiliated Hospital, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Desai D, Song T, Singh RR, Baby A, McNamara J, Green LC, Nabavizadeh P, Ericksen M, Bazrafshan S, Natesan S, Sadayappan S. MYBPC3 D389V Variant Induces Hypercontractility in Cardiac Organoids. Cells 2024; 13:1913. [PMID: 39594661 PMCID: PMC11592734 DOI: 10.3390/cells13221913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
MYBPC3, encoding cardiac myosin binding protein-C (cMyBP-C), is the most mutated gene known to cause hypertrophic cardiomyopathy (HCM). However, since little is known about the underlying etiology, additional in vitro studies are crucial to defining the underlying molecular mechanisms. Accordingly, this study aimed to investigate the molecular mechanisms underlying the pathogenesis of HCM associated with a polymorphic variant (D389V) in MYBPC3 by using isogenic human-induced pluripotent stem cell (hiPSC)-derived cardiac organoids (hCOs). The hiPSC-derived cardiomyocytes (hiPSC-CMs) and hCOs were generated from human subjects to define the molecular, cellular, functional, and energetic changes caused by the MYBPC3D389V variant, which is associated with increased fractional shortening and highly prevalent in South Asian descendants. Recombinant C0-C2, N' region of cMyBP-C (wild-type and D389V), and myosin S2 proteins were also utilized to perform binding and motility assays in vitro. Confocal and electron microscopic analyses of hCOs generated from noncarriers (NC) and carriers of the MYBPC3D389V variant revealed the presence of highly organized sarcomeres. Furthermore, functional experiments showed hypercontractility, faster calcium cycling, and faster contractile kinetics in hCOs expressing MYBPC3D389V than NC hCOs. Interestingly, significantly increased cMyBP-C phosphorylation in MYBPC3D389V hCOs was observed, but without changes in total protein levels, in addition to higher oxidative stress and lower mitochondrial membrane potential (ΔΨm). Next, spatial mapping revealed the presence of endothelial cells, fibroblasts, macrophages, immune cells, and cardiomyocytes in the hCOs. The hypercontractile function was significantly improved after the treatment of the myosin inhibitor mavacamten (CAMZYOS®) in MYBPC3D389V hCOs. Lastly, various vitro binding assays revealed a significant loss of affinity in the presence of MYBPC3D389V with myosin S2 region as a likely mechanism for hypercontraction. Conceptually, we showed the feasibility of assessing the functional and molecular mechanisms of HCM using highly translatable hCOs through pragmatic experiments that led to determining the MYBPC3D389V hypercontractile phenotype, which was rescued by the administration of a myosin inhibitor.
Collapse
Affiliation(s)
- Darshini Desai
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Taejeong Song
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Rohit R. Singh
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Akhil Baby
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - James McNamara
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Lisa C. Green
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Pooneh Nabavizadeh
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Mark Ericksen
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Sholeh Bazrafshan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (T.S.); (R.R.S.); (A.B.); (J.M.); (P.N.)
| |
Collapse
|
4
|
Wang Y, Hou Y, Hao T, Garcia-Contreras M, Li G, Cretoiu D, Xiao J. Model construction and clinical therapeutic potential of engineered cardiac organoids for cardiovascular diseases. BIOMATERIALS TRANSLATIONAL 2024; 5:337-354. [PMID: 39872935 PMCID: PMC11764187 DOI: 10.12336/biomatertransl.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 01/30/2025]
Abstract
Cardiovascular diseases cause significant morbidity and mortality worldwide. Engineered cardiac organoids are being developed and used to replicate cardiac tissues supporting cardiac morphogenesis and development. These organoids have applications in drug screening, cardiac disease models and regenerative medicine. Therefore, a thorough understanding of cardiac organoids and a comprehensive overview of their development are essential for cardiac tissue engineering. This review summarises different types of cardiac organoids used to explore cardiac function, including those based on co-culture, aggregation, scaffolds, and geometries. The self-assembly of monolayers, multilayers and aggravated cardiomyocytes forms biofunctional cell aggregates in cardiac organoids, elucidating the formation mechanism of scaffold-free cardiac organoids. In contrast, scaffolds such as decellularised extracellular matrices, three-dimensional hydrogels and bioprinting techniques provide a supportive framework for cardiac organoids, playing a crucial role in cardiac development. Different geometries are engineered to create cardiac organoids, facilitating the investigation of intrinsic communication between cardiac organoids and biomechanical pathways. Additionally, this review emphasises the relationship between cardiac organoids and the cardiac system, and evaluates their clinical applications. This review aims to provide valuable insights into the study of three-dimensional cardiac organoids and their clinical potential.
Collapse
Affiliation(s)
- Yongtao Wang
- Cardiac Regeneration and Ageing Lab, School of Medicine, Shanghai University, Shanghai, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, China
| | - Yan Hou
- Cardiac Regeneration and Ageing Lab, School of Medicine, Shanghai University, Shanghai, China
| | - Tian Hao
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marta Garcia-Contreras
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dragos Cretoiu
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Materno-Fetal Assistance Excellence Unit, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, School of Medicine, Shanghai University, Shanghai, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
Kistamás K, Lamberto F, Vaiciuleviciute R, Leal F, Muenthaisong S, Marte L, Subías-Beltrán P, Alaburda A, Arvanitis DN, Zana M, Costa PF, Bernotiene E, Bergaud C, Dinnyés A. The Current State of Realistic Heart Models for Disease Modelling and Cardiotoxicity. Int J Mol Sci 2024; 25:9186. [PMID: 39273136 PMCID: PMC11394806 DOI: 10.3390/ijms25179186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
One of the many unresolved obstacles in the field of cardiovascular research is an uncompromising in vitro cardiac model. While primary cell sources from animal models offer both advantages and disadvantages, efforts over the past half-century have aimed to reduce their use. Additionally, obtaining a sufficient quantity of human primary cardiomyocytes faces ethical and legal challenges. As the practically unlimited source of human cardiomyocytes from induced pluripotent stem cells (hiPSC-CM) is now mostly resolved, there are great efforts to improve their quality and applicability by overcoming their intrinsic limitations. The greatest bottleneck in the field is the in vitro ageing of hiPSC-CMs to reach a maturity status that closely resembles that of the adult heart, thereby allowing for more appropriate drug developmental procedures as there is a clear correlation between ageing and developing cardiovascular diseases. Here, we review the current state-of-the-art techniques in the most realistic heart models used in disease modelling and toxicity evaluations from hiPSC-CM maturation through heart-on-a-chip platforms and in silico models to the in vitro models of certain cardiovascular diseases.
Collapse
Affiliation(s)
- Kornél Kistamás
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
| | - Filipa Leal
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | | | - Luis Marte
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Paula Subías-Beltrán
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Aidas Alaburda
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Dina N Arvanitis
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Pedro F Costa
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Faculty of Fundamental Sciences, Vilnius Tech, Sauletekio al. 11, LT-10223 Vilnius, Lithuania
| | - Christian Bergaud
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| |
Collapse
|
6
|
Desai D, Song T, Singh RR, Baby A, McNamara J, Green L, Nabavizadeh P, Ericksen M, Bazrafshan S, Natesan S, Sadayappan S. MYBPC3 D389V Variant Induces Hypercontractility in Cardiac Organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596463. [PMID: 38853909 PMCID: PMC11160759 DOI: 10.1101/2024.05.29.596463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
BACKGROUND MYBPC3 , encoding cardiac myosin binding protein-C (cMyBP-C), is the most mutated gene known to cause hypertrophic cardiomyopathy (HCM). However, since little is known about the underlying etiology, additional in vitro studies are crucial to defining the underlying molecular mechanisms. Accordingly, this study aimed to investigate the molecular mechanisms underlying the pathogenesis of HCM associated with a polymorphic variant (D389V) in MYBPC3 by using human-induced pluripotent stem cell (hiPSC)-derived cardiac organoids (hCOs). METHODS The hiPSC-derived cardiomyocytes (hiPSC-CMs) and hCOs were generated from human subjects to define the molecular, cellular, and functional changes caused by the MYBPC3 D389V variant. This variant is associated with increased fractional shortening and is highly prevalent in South Asian descendants. Recombinant C0-C2, N'-region of cMyBP-C (wildtype and D389V), and myosin S2 proteins were also utilized to perform binding and motility assays in vitro . RESULTS Confocal and electron microscopic analyses of hCOs generated from noncarriers (NC) and carriers of the MYBPC3 D389V variant revealed the presence of highly organized sarcomeres. Furthermore, functional experiments showed hypercontractility with increased contraction velocity, faster calcium cycling, and faster contractile kinetics in hCOs expressing MYBPC3 D389V than NC hCOs. Interestingly, significantly increased cMyBP-C phosphorylation in MYBPC3 D389V hCOs was observed, but without changes in total protein levels, in addition to higher oxidative stress and lower mitochondrial membrane potential (ΔΨm). Next, spatial mapping revealed the presence of endothelial cells, fibroblasts, macrophages, immune cells, and cardiomyocytes in the hCOs. The hypercontractile function was significantly improved after treatment with the myosin inhibitor mavacamten (CAMZYOS®) in MYBPC3 D389V hCOs. Lastly, various in vitro binding assays revealed a significant loss of affinity in the presence of MYBPC3 D389V with myosin S2 region as a likely mechanism for hypercontraction. CONCLUSIONS Conceptually, we showed the feasibility of assessing the functional and molecular mechanisms of HCM using highly translatable hCOs through pragmatic experiments that led to determining the MYBPC3 D389V hypercontractile phenotype, which was rescued by administration of a myosin inhibitor. Novelty and Significance: What Is Known?: MYBPC3 mutations have been implicated in hypertrophic cardiomyopathy. D389V is a polymorphic variant of MYBPC3 predicted to be present in 53000 US South Asians owing to the founder effect. D389V carriers have shown evidence of hyperdynamic heart, and human-induced pluripotent stem cells (hiPSC)-derived cardiomyocytes with D389V show cellular hypertrophy and irregular calcium transients. The molecular mechanism by which the D389V variant develops pathological cardiac dysfunction remains to be conclusively determined.What New Information Does This Article Contribute ?: The authors leveraged a highly translational cardiac organoid model to explore the role of altered cardiac calcium handling and cardiac contractility as a common pathway leading to pathophysiological phenotypes in patients with early HCM. The MYBPC3 D389V -mediated pathological pathway is first studied here by comparing functional properties using three-dimensional cardiac organoids differentiated from hiPSC and determining the presence of hypercontraction. Our data demonstrate that faster sarcomere kinetics resulting from lower binding affinity between D389V-mutated cMyBP-C protein and myosin S2, as evidenced by in vitro studies, could cause hypercontractility which was rescued by administration of mavacamten (CAMZYOS®), a myosin inhibitor. In addition, hypercontractility causes secondary mitochondrial defects such as higher oxidative stress and lower mitochondrial membrane potential (ΔΨm), highlighting a possible early adaptive response to primary sarcomeric changes. Early treatment of MYBPC3 D389V carriers with mavacamten may prevent or reduce early HCM-related pathology. GRAPHICAL ABSTRACT: A graphical abstract is available for this article.
Collapse
|
7
|
Seguret M, Davidson P, Robben S, Jouve C, Pereira C, Lelong Q, Deshayes L, Cerveau C, Le Berre M, Rodrigues Ribeiro RS, Hulot JS. A versatile high-throughput assay based on 3D ring-shaped cardiac tissues generated from human induced pluripotent stem cell-derived cardiomyocytes. eLife 2024; 12:RP87739. [PMID: 38578976 PMCID: PMC11001295 DOI: 10.7554/elife.87739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
We developed a 96-well plate assay which allows fast, reproducible, and high-throughput generation of 3D cardiac rings around a deformable optically transparent hydrogel (polyethylene glycol [PEG]) pillar of known stiffness. Human induced pluripotent stem cell-derived cardiomyocytes, mixed with normal human adult dermal fibroblasts in an optimized 3:1 ratio, self-organized to form ring-shaped cardiac constructs. Immunostaining showed that the fibroblasts form a basal layer in contact with the glass, stabilizing the muscular fiber above. Tissues started contracting around the pillar at D1 and their fractional shortening increased until D7, reaching a plateau at 25±1%, that was maintained up to 14 days. The average stress, calculated from the compaction of the central pillar during contractions, was 1.4±0.4 mN/mm2. The cardiac constructs recapitulated expected inotropic responses to calcium and various drugs (isoproterenol, verapamil) as well as the arrhythmogenic effects of dofetilide. This versatile high-throughput assay allows multiple in situ mechanical and structural readouts.
Collapse
|
8
|
Basara G, Celebi LE, Ronan G, Discua Santos V, Zorlutuna P. 3D bioprinted aged human post-infarct myocardium tissue model. Health Sci Rep 2024; 7:e1945. [PMID: 38655426 PMCID: PMC11035382 DOI: 10.1002/hsr2.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/24/2023] [Accepted: 02/07/2024] [Indexed: 04/26/2024] Open
Abstract
Background and Aims Fibrotic tissue formed after myocardial infarction (MI) can be as detrimental as MI itself. However, current in vitro cardiac fibrosis models fail to recapitulate the complexities of post-MI tissue. Moreover, although MI and subsequent fibrosis is most prominent in the aged population, the field suffers from inadequate aged tissue models. Herein, an aged human post-MI tissue model, representing the native microenvironment weeks after initial infarction, is engineered using three-dimensional bioprinting via creation of individual bioinks to specifically mimic three distinct regions: remote, border, and scar. Methods The aged post-MI tissue model is engineered through combination of gelatin methacryloyl, methacrylated hyaluronic acid, aged type I collagen, and photoinitiator at variable concentrations with different cell types, including aged human induced pluripotent stem cell-derived cardiomyocytes, endothelial cells, cardiac fibroblasts, and cardiac myofibroblasts, by introducing a methodology which utilizes three printheads of the bioprinter to model aged myocardium. Then, using cell-specific proteins, the cell types that comprised each region are confirmed using immunofluorescence. Next, the beating characteristics are analyzed. Finally, the engineered aged post-MI tissue model is used as a benchtop platform to assess the therapeutic effects of stem cell-derived extracellular vesicles on the scar region. Results As a result, high viability (>74%) was observed in each region of the printed model. Constructs demonstrated functional behavior, exhibiting a beating velocity of 6.7 μm/s and a frequency of 0.3 Hz. Finally, the effectiveness of hiPSC-EV and MSC-EV treatment was assessed. While hiPSC-EV treatment showed no significant changes, MSC-EV treatment notably increased cardiomyocyte beating velocity, frequency, and confluency, suggesting a regenerative potential. Conclusion In conclusion, we envision that our approach of modeling post-MI aged myocardium utilizing three printheads of the bioprinter may be utilized for various applications in aged cardiac microenvironment modeling and testing novel therapeutics.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
| | - Lara Ece Celebi
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
| | - George Ronan
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
| | | | - Pinar Zorlutuna
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
- Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
9
|
Vermersch E, Neuvendel S, Jouve C, Ruiz-Velasco A, Pereira C, Seguret M, Cattin-Messaoudi ME, Lotfi S, Dorval T, Berson P, Hulot JS. hsa-miR-548v controls the viscoelastic properties of human cardiomyocytes and improves their relaxation rates. JCI Insight 2024; 9:e161356. [PMID: 38165745 PMCID: PMC11143964 DOI: 10.1172/jci.insight.161356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/19/2023] [Indexed: 01/04/2024] Open
Abstract
The impairment of left ventricular (LV) diastolic function with an inadequate increase in myocardial relaxation velocity directly results in lower LV compliance, increased LV filling pressures, and heart failure symptoms. The development of agents facilitating the relaxation of human cardiomyocytes requires a better understanding of the underlying regulatory mechanisms. We performed a high-content microscopy-based screening in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using a library of 2,565 human miRNA mimics and measured relaxation kinetics via high-computing analyses of motion movies. We identified hsa-miR-548v, a primate-specific miRNA, as the miRNA producing the largest increase in relaxation velocities. This positive lusitropic effect was reproduced in engineered cardiac tissues generated with healthy and BRAF T599R mutant hiPSC-CMs and was independent of changes in calcium transients. Consistent with improvements in viscoelastic responses to mechanical stretch, RNA-Seq showed that hsa-miR-548v downregulated multiple targets, especially components of the mechanosensing machinery. The exogenous administration of hsa-miR-548v in hiPSC-CMs notably resulted in a significant reduction of ANKRD1/CARP1 expression and localization at the sarcomeric I-band. This study suggests that the sarcomere I-band is a critical control center regulating the ability of cardiomyocytes to relax and is a target for improving relaxation and diastolic dysfunction.
Collapse
Affiliation(s)
- Eva Vermersch
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
- Institut de recherches Servier, In vitro Pharmacology unit, and
| | | | - Charlène Jouve
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | | | - Céline Pereira
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Magali Seguret
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | | | - Sofia Lotfi
- Institut de recherches Servier, In vitro Pharmacology unit, and
| | - Thierry Dorval
- Institut de recherches Servier, In vitro Pharmacology unit, and
| | - Pascal Berson
- Institut de recherches Servier, Cardiovascular and Metabolism Therapeutic Area, Croissy-sur-seine, France
| | - Jean-Sébastien Hulot
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, F-75015, Paris, France
| |
Collapse
|
10
|
Ke M, Xu W, Hao Y, Zheng F, Yang G, Fan Y, Wang F, Nie Z, Zhu C. Construction of millimeter-scale vascularized engineered myocardial tissue using a mixed gel. Regen Biomater 2023; 11:rbad117. [PMID: 38223293 PMCID: PMC10786677 DOI: 10.1093/rb/rbad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 12/17/2023] [Indexed: 01/16/2024] Open
Abstract
Engineering myocardium has shown great clinal potential for repairing permanent myocardial injury. However, the lack of perfusing blood vessels and difficulties in preparing a thick-engineered myocardium result in its limited clinical use. We prepared a mixed gel containing fibrin (5 mg/ml) and collagen I (0.2 mg/ml) and verified that human umbilical vein endothelial cells (HUVECs) and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) could form microvascular lumens and myocardial cell clusters by harnessing the low-hardness and hyperelastic characteristics of fibrin. hiPSC-CMs and HUVECs in the mixed gel formed self-organized cell clusters, which were then cultured in different media using a three-phase approach. The successfully constructed vascularized engineered myocardial tissue had a spherical structure and final diameter of 1-2 mm. The tissue exhibited autonomous beats that occurred at a frequency similar to a normal human heart rate. The internal microvascular lumen could be maintained for 6 weeks and showed good results during preliminary surface re-vascularization in vitro and vascular remodeling in vivo. In summary, we propose a simple method for constructing vascularized engineered myocardial tissue, through phased cultivation that does not rely on high-end manufacturing equipment and cutting-edge preparation techniques. The constructed tissue has potential value for clinical use after preliminary evaluation.
Collapse
Affiliation(s)
- Ming Ke
- Department of Anatomy, Third Military Medical University, Chongqing 400038, China
| | - Wenhui Xu
- Department of Anatomy, Third Military Medical University, Chongqing 400038, China
| | - Yansha Hao
- Department of Anatomy, Third Military Medical University, Chongqing 400038, China
| | - Feiyang Zheng
- Department of Anatomy, Third Military Medical University, Chongqing 400038, China
| | - Guanyuan Yang
- Department of Anatomy, Third Military Medical University, Chongqing 400038, China
| | - Yonghong Fan
- Department of Anatomy, Third Military Medical University, Chongqing 400038, China
| | - Fangfang Wang
- Department of Anatomy, Third Military Medical University, Chongqing 400038, China
| | - Zhiqiang Nie
- Department of Anatomy, Third Military Medical University, Chongqing 400038, China
| | - Chuhong Zhu
- Department of Anatomy, Third Military Medical University, Chongqing 400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing 400038, China
- Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing 400038, China
| |
Collapse
|
11
|
Kafili G, Kabir H, Jalali Kandeloos A, Golafshan E, Ghasemi S, Mashayekhan S, Taebnia N. Recent advances in soluble decellularized extracellular matrix for heart tissue engineering and organ modeling. J Biomater Appl 2023; 38:577-604. [PMID: 38006224 PMCID: PMC10676626 DOI: 10.1177/08853282231207216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Despite the advent of tissue engineering (TE) for the remodeling, restoring, and replacing damaged cardiovascular tissues, the progress is hindered by the optimal mechanical and chemical properties required to induce cardiac tissue-specific cellular behaviors including migration, adhesion, proliferation, and differentiation. Cardiac extracellular matrix (ECM) consists of numerous structural and functional molecules and tissue-specific cells, therefore it plays an important role in stimulating cell proliferation and differentiation, guiding cell migration, and activating regulatory signaling pathways. With the improvement and modification of cell removal methods, decellularized ECM (dECM) preserves biochemical complexity, and bio-inductive properties of the native matrix and improves the process of generating functional tissue. In this review, we first provide an overview of the latest advancements in the utilization of dECM in in vitro model systems for disease and tissue modeling, as well as drug screening. Then, we explore the role of dECM-based biomaterials in cardiovascular regenerative medicine (RM), including both invasive and non-invasive methods. In the next step, we elucidate the engineering and material considerations in the preparation of dECM-based biomaterials, namely various decellularization techniques, dECM sources, modulation, characterizations, and fabrication approaches. Finally, we discuss the limitations and future directions in fabrication of dECM-based biomaterials for cardiovascular modeling, RM, and clinical translation.
Collapse
Affiliation(s)
- Golara Kafili
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Hannaneh Kabir
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, USA
| | | | - Elham Golafshan
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Sara Ghasemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Nayere Taebnia
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
12
|
Yang Z, Zhang Y, Wang J, Yin J, Wang Z, Pei R. Cardiac organoid: multiple construction approaches and potential applications. J Mater Chem B 2023; 11:7567-7581. [PMID: 37477533 DOI: 10.1039/d3tb00783a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The human cardiac organoid (hCO) is three-dimensional tissue model that is similar to an in vivo organ and has great potential on heart development biology, disease modeling, drug screening and regenerative medicine. However, the construction of hCO presents a unique challenge compared with other organoids such as the lung, small intestine, pancreas, liver. Since heart disease is the dominant cause of death and the treatment of such disease is one of the most unmet medical needs worldwide, developing technologies for the construction and application of hCO is a critical task for the scientific community. In this review, we discuss the current classification and construction methods of hCO. In addition, we describe its applications in drug screening, disease modeling, and regenerative medicine. Finally, we propose the limitations of the cardiac organoid and future research directions. A detailed understanding of hCO will provide ways to improve its construction and expand its applications.
Collapse
Affiliation(s)
- Ziyi Yang
- School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| | - Jine Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| | - Jingbo Yin
- School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
| | - Zheng Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| |
Collapse
|
13
|
Li J, Yang J, Zhao D, Lei W, Hu S. Promises and challenges of cardiac organoids. Mamm Genome 2023; 34:351-356. [PMID: 37016187 DOI: 10.1007/s00335-023-09987-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 03/09/2023] [Indexed: 04/06/2023]
Abstract
Cardiovascular diseases are currently the main cause of death. The study of the pathogenesis and treatment of these diseases is still a major challenge. Traditional 2D cultured cells and animal models have certain limitations. Heart organoids as models can simulate the structure and function of the body, providing a new research strategy. This paper mainly discusses the development of organoids and their application in the study of the cardiac developmental process, drug screening and treatment of genetic and non-genetic diseases, concluding with their strengths and weaknesses.
Collapse
Affiliation(s)
- Jingxian Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Jingsi Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Dandan Zhao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
14
|
Zhu L, Liu K, Feng Q, Liao Y. Cardiac Organoids: A 3D Technology for Modeling Heart Development and Disease. Stem Cell Rev Rep 2022; 18:2593-2605. [PMID: 35525908 DOI: 10.1007/s12015-022-10385-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Cardiac organoids (COs) are miniaturized and simplified organ structures that can be used in heart development biology, drug screening, disease modeling, and regenerative medicine. This cardiac organoid (CO) model is revolutionizing our perspective on answering major cardiac physiology and pathology issues. Recently, many research groups have reported various methods for modeling the heart in vitro. However, there are differences in methodologies and concepts. In this review, we discuss the recent advances in cardiac organoid technologies derived from human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs), with a focus on the summary of methods for organoid generation. In addition, we introduce CO applications in modeling heart development and cardiovascular diseases and discuss the prospects for and common challenges of CO that still need to be addressed. A detailed understanding of the development of CO will help us design better methods, explore and expand its application in the cardiovascular field.
Collapse
Affiliation(s)
- Liyuan Zhu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Kui Liu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qi Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingnan Liao
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
15
|
Varzideh F, Mone P, Santulli G. Bioengineering Strategies to Create 3D Cardiac Constructs from Human Induced Pluripotent Stem Cells. Bioengineering (Basel) 2022; 9:168. [PMID: 35447728 PMCID: PMC9028595 DOI: 10.3390/bioengineering9040168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) can be used to generate various cell types in the human body. Hence, hiPSC-derived cardiomyocytes (hiPSC-CMs) represent a significant cell source for disease modeling, drug testing, and regenerative medicine. The immaturity of hiPSC-CMs in two-dimensional (2D) culture limit their applications. Cardiac tissue engineering provides a new promise for both basic and clinical research. Advanced bioengineered cardiac in vitro models can create contractile structures that serve as exquisite in vitro heart microtissues for drug testing and disease modeling, thereby promoting the identification of better treatments for cardiovascular disorders. In this review, we will introduce recent advances of bioengineering technologies to produce in vitro cardiac tissues derived from hiPSCs.
Collapse
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Gaetano Santulli
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
16
|
Narkar A, Willard JM, Blinova K. Chronic Cardiotoxicity Assays Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs). Int J Mol Sci 2022; 23:ijms23063199. [PMID: 35328619 PMCID: PMC8953833 DOI: 10.3390/ijms23063199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/18/2022] Open
Abstract
Cardiomyocytes (CMs) differentiated from human induced pluripotent stem cells (hiPSCs) are increasingly used in cardiac safety assessment, disease modeling and regenerative medicine. A vast majority of cardiotoxicity studies in the past have tested acute effects of compounds and drugs; however, these studies lack information on the morphological or physiological responses that may occur after prolonged exposure to a cardiotoxic compound. In this review, we focus on recent advances in chronic cardiotoxicity assays using hiPSC-CMs. We summarize recently published literature on hiPSC-CMs assays applied to chronic cardiotoxicity induced by anticancer agents, as well as non-cancer classes of drugs, including antibiotics, anti-hepatitis C virus (HCV) and antidiabetic drugs. We then review publications on the implementation of hiPSC-CMs-based assays to investigate the effects of non-pharmaceutical cardiotoxicants, such as environmental chemicals or chronic alcohol consumption. We also highlight studies demonstrating the chronic effects of smoking and implementation of hiPSC-CMs to perform genomic screens and metabolomics-based biomarker assay development. The acceptance and wide implementation of hiPSC-CMs-based assays for chronic cardiotoxicity assessment will require multi-site standardization of assay protocols, chronic cardiac maturity marker reproducibility, time points optimization, minimal cellular variation (commercial vs. lab reprogrammed), stringent and matched controls and close clinical setting resemblance. A comprehensive investigation of long-term repeated exposure-induced effects on both the structure and function of cardiomyocytes can provide mechanistic insights and recapitulate drug and environmental cardiotoxicity.
Collapse
Affiliation(s)
- Akshay Narkar
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - James M. Willard
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Ksenia Blinova
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
- Correspondence:
| |
Collapse
|