1
|
Schwartz AV, Chao G, Robinson M, Conley BM, Ahmed Adam MA, Wells GA, Hoang A, Albekioni E, Gallo C, Weeks J, Yunker K, Quichocho G, George UZ, Niesman I, House CD, Turcan Ş, Sohl CD. Catalytically distinct metabolic enzyme isocitrate dehydrogenase 1 mutants tune phenotype severity in tumor models. J Biol Chem 2025:108477. [PMID: 40188944 DOI: 10.1016/j.jbc.2025.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) impart a neomorphic reaction that produces D-2-hydroxyglutarate (D2HG), which can inhibit DNA demethylases to drive tumorigenesis. Mutations affect residue R132 and display distinct catalytic profiles for D2HG production. We show that catalytic efficiency of D2HG production is greater in IDH1 R132Q than R132H mutants, and expression of IDH1 R132Q in cellular and xenograft models leads to higher D2HG concentrations in cells, tumors, and sera compared to R132H. Though expression of IDH1 R132Q leads to hypermethylation in DNA damage pathways, DNA hypomethylation is more notable when compared to IDH1 R132H expression. Transcriptome analysis shows increased expression of many pro-tumor pathways upon expression of IDH1 R132Q versus R132H, including transcripts of EGFR and PI3K signaling pathways. Thus, IDH1 mutants appear to modulate D2HG levels via altered catalysis and are associated with distinct epigenetic and transcriptomic consequences, with higher D2HG levels appearing to be associated with more aggressive tumors.
Collapse
Affiliation(s)
- Ashley V Schwartz
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA; These authors contributed equally: Ashley V. Schwartz, Grace Chao, Mikella Robinson, and Brittany Conley
| | - Grace Chao
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; These authors contributed equally: Ashley V. Schwartz, Grace Chao, Mikella Robinson, and Brittany Conley
| | - Mikella Robinson
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; These authors contributed equally: Ashley V. Schwartz, Grace Chao, Mikella Robinson, and Brittany Conley
| | - Brittany M Conley
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA; These authors contributed equally: Ashley V. Schwartz, Grace Chao, Mikella Robinson, and Brittany Conley
| | | | - Grace A Wells
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - An Hoang
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Elene Albekioni
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Cecilia Gallo
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Joi Weeks
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Katelyn Yunker
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Giovanni Quichocho
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Uduak Z George
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA; Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA
| | - Ingrid Niesman
- Electron Microscope Facility, San Diego State University, San Diego, CA 92123, USA
| | - Carrie D House
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Şevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, 69120 Heidelberg, Germany.
| | - Christal D Sohl
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
2
|
Bou-Gharios J, Noël G, Burckel H. The neglected burden of chronic hypoxia on the resistance of glioblastoma multiforme to first-line therapies. BMC Biol 2024; 22:278. [PMID: 39609830 PMCID: PMC11603919 DOI: 10.1186/s12915-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common adult primary brain tumor. The standard of care involves maximal surgery followed by radiotherapy and concomitant chemotherapy with temozolomide (TMZ), in addition to adjuvant TMZ. However, the recurrence rate of GBM within 1-2 years post-diagnosis is still elevated and has been attributed to the accumulation of multiple factors including the heterogeneity of GBM, genomic instability, angiogenesis, and chronic tumor hypoxia. Tumor hypoxia activates downstream signaling pathways involved in the adaptation of GBM to the newly oxygen-deprived environment, thereby contributing to the resistance and recurrence phenomena, despite the multimodal therapeutic approach used to eradicate the tumor. Therefore, in this review, we will focus on the development and implication of chronic or limited-diffusion hypoxia in tumor persistence through genetic and epigenetic modifications. Then, we will detail the hypoxia-induced activation of vital biological pathways and mechanisms that contribute to GBM resistance. Finally, we will discuss a proteomics-based approach to encourage the implication of personalized GBM treatments based on a hypoxia signature.
Collapse
Affiliation(s)
- Jolie Bou-Gharios
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France
| | - Georges Noël
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France
- Institut de Cancérologie Strasbourg Europe (ICANS), Department of Radiation Oncology, UNICANCER, 17 Rue Albert Calmette, Strasbourg, 67200, France
| | - Hélène Burckel
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France.
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France.
| |
Collapse
|
3
|
Xu H, Cao Y, Ruan J, Wang F, He Y, Yang L, Yu T, Du F, Zhang N, Cao X. The effects of BMP2 and the mechanisms involved in the invasion and angiogenesis of IDH1 mutant glioma cells. J Neurooncol 2024; 170:161-171. [PMID: 39117967 PMCID: PMC11447149 DOI: 10.1007/s11060-024-04789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE This study investigated the effect of an isocitrate dehydrogenase 1 (IDH1) mutation (mutIDH1) on the invasion and angiogenesis of human glioma cells. METHODS Doxycycline was used to induce the expression of mutIDH1 in glioma cells. Transwell and wound healing assays were conducted to assess glioma cell migration and invasion. Western blotting and cell immunofluorescence were used to measure the expression levels of various proteins. The influence of bone morphogenetic protein 2 (BMP2) on invasion, angiogenesis-related factors, BMP2-related receptor expression, and changes in Smad signaling pathway-related proteins were evaluated after treatment with BMP2. Differential gene expression and reference transcription analysis were performed. RESULTS Successful infection with recombinant lentivirus expressing mutIDH1 was demonstrated. The IDH1 mutation promoted glioma cell migration and invasion while positively regulating the expression of vascularization-related factors and BMP2-related receptors. BMP2 exhibited a positive regulatory effect on the migration, invasion, and angiogenesis of mutIDH1-glioma cells, possibly mediated by BMP2-induced alterations in Smad signaling pathway-related factors.After BMP2 treatment, the differential genes of MutIDH1-glioma cells are closely related to the regulation of cell migration and cell adhesion, especially the regulation of Smad-related proteins. KEGG analysis confirmed that it was related to BMP signaling pathway and TGF-β signaling pathway and cell adhesion. Enrichment analysis of gene ontology and genome encyclopedia further confirmed the correlation of these pathways. CONCLUSION Mutation of isocitrate dehydrogenase 1 promotes the migration, invasion, and angiogenesis of glioma cells, through its effects on the BMP2-driven Smad signaling pathway. In addition, BMP2 altered the transcriptional patterns of mutIDH1 glioma cells, enriching different gene loci in pathways associated with invasion, migration, and angiogenesis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
- Department of Pathology, The First People's Hospital of Yinchuan, Yinchuan, 750001, Ningxia, China
| | - Yu Cao
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Jianqiao Ruan
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Fei Wang
- Department of Pathology, The First People's Hospital of Yinchuan, Yinchuan, 750001, Ningxia, China
| | - Yuhong He
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Lina Yang
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Tian Yu
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China
| | - Fang Du
- School of Information Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Ningmei Zhang
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, P.R. China.
| | - Xiangmei Cao
- Department of Pathology, Basic Medical School of Ningxia Medical University, 1160 Shengli South Street, Yinchuan, 750004, Ningxia, Hui Autonomous Region, P.R. China.
| |
Collapse
|
4
|
Ahmed Adam MA, Robinson M, Schwartz AV, Wells G, Hoang A, Albekioni E, Gallo C, Chao G, Weeks J, Quichocho G, George UZ, House CD, Turcan Ş, Sohl CD. Catalytically distinct IDH1 mutants tune phenotype severity in tumor models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590655. [PMID: 38712107 PMCID: PMC11071412 DOI: 10.1101/2024.04.22.590655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) impart a neomorphic reaction that produces D-2-hydroxyglutarate (D2HG), which can inhibit DNA demethylases to drive tumorigenesis. Mutations affect residue R132 and display distinct catalytic profiles for D2HG production. We show that catalytic efficiency of D2HG production is greater in IDH1 R132Q than R132H mutants, and expression of R132Q in cellular and xenograft models leads to higher D2HG concentrations in cells, tumors, and sera compared to R132H. Though expression of IDH1 R132Q leads to hypermethylation in DNA damage pathways, DNA hypomethylation is more notable when compared to R132H expression. Transcriptome analysis shows increased expression of many pro-tumor pathways upon expression of IDH1 R132Q versus R132H, including transcripts of EGFR and PI3K signaling pathways. Thus, IDH1 mutants appear to modulate D2HG levels via altered catalysis, resulting in distinct epigenetic and transcriptomic consequences where higher D2HG levels appear to be associated with more aggressive tumors.
Collapse
Affiliation(s)
- Mowaffaq Adam Ahmed Adam
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
- These authors contributed equally: Mowaffaq Adam Ahmed Adam, Mikella Robinson, Ashley Schwartz, Grace Wells
| | - Mikella Robinson
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
- These authors contributed equally: Mowaffaq Adam Ahmed Adam, Mikella Robinson, Ashley Schwartz, Grace Wells
| | - Ashley V. Schwartz
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
- These authors contributed equally: Mowaffaq Adam Ahmed Adam, Mikella Robinson, Ashley Schwartz, Grace Wells
| | - Grace Wells
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
- These authors contributed equally: Mowaffaq Adam Ahmed Adam, Mikella Robinson, Ashley Schwartz, Grace Wells
| | - An Hoang
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Elene Albekioni
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Cecilia Gallo
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Grace Chao
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Joi Weeks
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Giovanni Quichocho
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Uduak Z. George
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Carrie D. House
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Şevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, 69120 Heidelberg, Germany
| | - Christal D. Sohl
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
5
|
Tahmasebi Dehkordi H, Khaledi F, Ghasemi S. Immunological processes of enhancers and suppressors of long non-coding RNAs associated with brain tumors and inflammation. Int Rev Immunol 2024; 43:178-196. [PMID: 37974420 DOI: 10.1080/08830185.2023.2280581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Immunological processes, such as inflammation, can both cause tumor suppression and cancer progression. Moreover, deregulated levels of long non-coding RNA (lncRNA) expression in the brain may cause inflammation and lead to the growth of tumors. Like other biological processes, the immune system's role in cancer is complicated, varies, and can help or hurt the cancer's maintenance. According to research, inflammation and brain cancer are correlated via several signaling pathways. A variety of lncRNAs have recently been revealed to influence cancer by modulating inflammatory pathways. As a result, lncRNAs have the potential to influence carcinogenesis, tumor formation, or tumor suppression via an increase or decrease in inflammation functions. Although the study and targeting of lncRNAs have made great progress in the treatment of cancer, there are definitely limitations and challenges. Using new technologies like nanocarriers and cell-penetrating peptides (CPPs) to target treatments without hurting healthy body tissues has shown to be very effective. In this review article, we have collected significantly related lncRNAs and their inhibitory or stimulating roles in inflammation and brain cancer for the first time. However, there are limitations, such as side effects and damage to normal tissues. With the advancement of new targeting technologies, these lncRNAs may be candidates for the specific targeting therapy of brain cancers by limiting inflammation or stimulating the immune system against them in the future.
Collapse
Affiliation(s)
- Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Khaledi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Caffo M, Casili G, Caruso G, Barresi V, Campolo M, Paterniti I, Minutoli L, Ius T, Esposito E. DKK3 Expression in Glioblastoma: Correlations with Biomolecular Markers. Int J Mol Sci 2024; 25:4091. [PMID: 38612910 PMCID: PMC11012478 DOI: 10.3390/ijms25074091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Glioblastoma is the most common malignant primary tumor of the CNS. The prognosis is dismal, with a median survival of 15 months. Surgical treatment followed by adjuvant therapies such as radiotherapy and chemotherapy characterize the classical strategy. The WNT pathway plays a key role in cellular proliferation, differentiation, and invasion. The DKK3 protein, capable of acting as a tumor suppressor, also appears to be able to modulate the WNT pathway. We performed, in a series of 40 patients, immunohistochemical and Western blot evaluations of DKK3 to better understand how the expression of this protein can influence clinical behavior. We used a statistical analysis, with correlations between the expression of DKK3 and overall survival, age, sex, Ki-67, p53, and MGMT and IDH status. We also correlated our data with information included in the cBioPortal database. In our analyses, DKK3 expression, in both immunohistochemistry and Western blot analyses, was reduced or absent in many cases, showing downregulation. To date, no clinical study exists in the literature that reports a potential correlation between IDH and MGMT status and the WNT pathway through the expression of DKK3. Modulation of this pathway through the expression of DKK3 could represent a new tailored therapeutic strategy in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Maria Caffo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98100 Messina, Italy;
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (G.C.); (M.C.); (I.P.); (E.E.)
| | - Gerardo Caruso
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98100 Messina, Italy;
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37124 Verona, Italy;
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (G.C.); (M.C.); (I.P.); (E.E.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (G.C.); (M.C.); (I.P.); (E.E.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy;
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, 33100 Udine, Italy;
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (G.C.); (M.C.); (I.P.); (E.E.)
| |
Collapse
|
7
|
Verdugo E, Puerto I, Medina MÁ. An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1083-1111. [PMID: 36129048 DOI: 10.1002/cac2.12361] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/07/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and common malignant primary brain tumor. Patients with GBM often have poor prognoses, with a median survival of ∼15 months. Enhanced understanding of the molecular biology of central nervous system tumors has led to modifications in their classifications, the most recent of which classified these tumors into new categories and made some changes in their nomenclature and grading system. This review aims to give a panoramic view of the last 3 years' findings in glioblastoma characterization, its heterogeneity, and current advances in its treatment. Several molecular parameters have been used to achieve an accurate and personalized characterization of glioblastoma in patients, including epigenetic, genetic, transcriptomic and metabolic features, as well as age- and sex-related patterns and the involvement of several noncoding RNAs in glioblastoma progression. Astrocyte-like neural stem cells and outer radial glial-like cells from the subventricular zone have been proposed as agents involved in GBM of IDH-wildtype origin, but this remains controversial. Glioblastoma metabolism is characterized by upregulation of the PI3K/Akt/mTOR signaling pathway, promotion of the glycolytic flux, maintenance of lipid storage, and other features. This metabolism also contributes to glioblastoma's resistance to conventional therapies. Tumor heterogeneity, a hallmark of GBM, has been shown to affect the genetic expression, modulation of metabolic pathways, and immune system evasion. GBM's aggressive invasion potential is modulated by cell-to-cell crosstalk within the tumor microenvironment and altered expressions of specific genes, such as ANXA2, GBP2, FN1, PHIP, and GLUT3. Nevertheless, the rising number of active clinical trials illustrates the efforts to identify new targets and drugs to treat this malignancy. Immunotherapy is still relevant for research purposes, given the amount of ongoing clinical trials based on this strategy to treat GBM, and neoantigen and nucleic acid-based vaccines are gaining importance due to their antitumoral activity by inducing the immune response. Furthermore, there are clinical trials focused on the PI3K/Akt/mTOR axis, angiogenesis, and tumor heterogeneity for developing molecular-targeted therapies against GBM. Other strategies, such as nanodelivery and computational models, may improve the drug pharmacokinetics and the prognosis of patients with GBM.
Collapse
Affiliation(s)
- Elena Verdugo
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain
| | - Iker Puerto
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain.,Biomedical Research Institute of Málaga (IBIMA-Plataforma Bionand), Málaga, Málaga, E-29071, Spain.,Spanish Biomedical Research Network Center for Rare Diseases (CIBERER), Spanish Health Institute Carlos III (ISCIII), Málaga, Málaga, E-29071, Spain
| |
Collapse
|
8
|
Daisy Precilla S, Biswas I, Kuduvalli SS, Anitha TS. Crosstalk between PI3K/AKT/mTOR and WNT/β-Catenin signaling in GBM - Could combination therapy checkmate the collusion? Cell Signal 2022; 95:110350. [PMID: 35525406 DOI: 10.1016/j.cellsig.2022.110350] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme is one of the calamitous primary glial brain tumors with extensive heterogeneity at cellular and molecular levels. While maximal surgical resection trailed by radio and chemotherapy employing temozolomide remains the gold-standard treatment for malignant glioma patients, the overall prognosis remains dismal and there exists an unmet need for effective therapeutic strategies. In this context, we hypothesize that proper understanding of signaling pathways responsible for glioblastoma multiforme proliferation would be the first trump card while searching for novel targeted therapies. Among the pathways aberrantly activated, PI3K/AKT/mTOR is the most significant pathway, that is clinically implicated in malignancies such as high-grade glioma. Further, the WNT/β-Catenin cascade is well-implicated in several malignancies, while its role in regulating glioma pathogenesis has only emerged recently. Nevertheless, oncogenic activation of both these pathways is a frequent event in malignant glioma that facilitates tumor proliferation, stemness and chemo-resistance. Recently, it has been reported that the cross-talk of PI3K/AKT/mTOR pathway with multiple signaling pathways could promote glioma progression and reduce the sensitivity of glioma cells to the standard therapy. However, very few studies had focused on the relationship between PI3K/AKT/mTOR and WNT/β-Catenin pathways in glioblastoma multiforme. Interestingly, in homeostatic and pathologic circumstances, both these pathways depict fine modulation and are connected at multiple levels by upstream and downstream effectors. Thus, gaining deep insights on the collusion between these pathways would help in discovering unique therapeutic targets for glioblastoma multiforme management. Hence, the current review aims to address, "the importance of inter-play between PI3K/AKT/mTOR and WNT/β-Catenin pathways", and put forward, "the possibility of combinatorially targeting them", for glioblastoma multiforme treatment enhancement.
Collapse
Affiliation(s)
- S Daisy Precilla
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Indrani Biswas
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - T S Anitha
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India.
| |
Collapse
|