1
|
Lui K, Huang Y, Sheikh MS, Cheung KK, Tam WY, Sun KT, Cheng KM, Ng WWM, Loh AWK. The oncogenic potential of Rab-like protein 1A (RBEL1A) GTPase: The first review of RBEL1A research with future research directions and challenges. J Cancer 2023; 14:3214-3226. [PMID: 37928422 PMCID: PMC10622986 DOI: 10.7150/jca.84267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
Research on Rab-like protein 1A (RBEL1A) in the past two decades highlighted the oncogenic properties of this gene. Despite the emerging evidence, its importance in cancer biology was underrated. This is the first RBEL1A critical review covering its discovery, biochemistry, physiological functions, and clinical insights. RBEL1A expression at the appropriate levels appears essential in normal cells and tissues to maintain chromosomal stability; however, its overexpression is linked to tumorigenesis. Furthermore, the upstream and downstream targets of the RBEL1A signaling pathways will be discussed. Mechanistically, RBEL1A promotes cell proliferation signals by enhancing the Erk1/2, Akt, c-Myc, and CDK pathways while blunting the apoptotic signals via inhibitions on p53, Rb, and caspase pathways. More importantly, this review covers the clinical relevance of RBEL1A in the cancer field, such as drug resistance and poor overall survival rate. Also, this review points out the bottle-necks of the RBEL1A research and its future research directions. It is becoming clear that RBEL1A could potentially serve as a valuable target of anticancer therapy. Genetic and pharmacological researches are expected to facilitate the identification and development of RBEL1A inhibitors as cancer therapeutics in the future, which could undoubtedly improve the management of human malignancy.
Collapse
Affiliation(s)
- Ki Lui
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong
| | - Ying Huang
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - M. Saeed Sheikh
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Wing Yip Tam
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keng-Ting Sun
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, United Kingdom
| | - Ka Ming Cheng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | | | - Anthony Wai-Keung Loh
- Division of Science, Engineering and Health Studies (SEHS), College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
2
|
Thiel JT, Daigeler A, Kolbenschlag J, Rachunek K, Hoffmann S. The Role of CDK Pathway Dysregulation and Its Therapeutic Potential in Soft Tissue Sarcoma. Cancers (Basel) 2022; 14:3380. [PMID: 35884441 PMCID: PMC9323700 DOI: 10.3390/cancers14143380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/04/2023] Open
Abstract
Soft tissue sarcomas (STSs) are tumors that are challenging to treat due to their pathologic and molecular heterogeneity and their tumor biology that is not yet fully understood. Recent research indicates that dysregulation of cyclin-dependent kinase (CDK) signaling pathways can be a strong driver of sarcogenesis. CDKs are enzyme forms that play a crucial role in cell-cycle control and transcription. They belong to the protein kinases group and to the serine/threonine kinases subgroup. Recently identified CDK/cyclin complexes and established CDK/cyclin complexes that regulate the cell cycle are involved in the regulation of gene expression through phosphorylation of critical components of transcription and pre-mRNA processing mechanisms. The current and continually growing body of data shows that CDKs play a decisive role in tumor development and are involved in the proliferation and growth of sarcoma cells. Since the abnormal expression or activation of large numbers of CDKs is considered to be characteristic of cancer development and progression, dysregulation of the CDK signaling pathways occurs in many subtypes of STSs. This review discusses how reversal and regulation can be achieved with new therapeutics and summarizes the current evidence from studies regarding CDK modulation for STS treatment.
Collapse
Affiliation(s)
- Johannes Tobias Thiel
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, 72076 Tuebingen, Germany; (A.D.); (J.K.); (K.R.); (S.H.)
| | | | | | | | | |
Collapse
|
3
|
Kohlmeyer JL, Kaemmer CA, Lingo JJ, Voigt E, Leidinger MR, McGivney GR, Scherer A, Koppenhafer SL, Gordon DJ, Breheny P, Meyerholz DK, Tanas MR, Dodd RD, Quelle DE. Oncogenic RABL6A promotes NF1-associated MPNST progression in vivo. Neurooncol Adv 2022; 4:vdac047. [PMID: 35571990 PMCID: PMC9092646 DOI: 10.1093/noajnl/vdac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas with complex molecular and genetic alterations. Powerful tumor suppressors CDKN2A and TP53 are commonly disrupted along with NF1, a gene that encodes a negative regulator of Ras. Many additional factors have been implicated in MPNST pathogenesis. A greater understanding of critical drivers of MPNSTs is needed to guide more informed targeted therapies for patients. RABL6A is a newly identified driver of MPNST cell survival and proliferation whose in vivo role in the disease is unknown. Methods Using CRISPR-Cas9 targeting of Nf1 + Cdkn2a or Nf1 + Tp53 in the mouse sciatic nerve to form de novo MPNSTs, we investigated the biological significance of RABL6A in MPNST development. Terminal tumors were evaluated by western blot, qRT-PCR, and immunohistochemistry. Results Mice lacking Rabl6 displayed slower tumor progression and extended survival relative to wildtype animals in both genetic contexts. YAP oncogenic activity was selectively downregulated in Rabl6-null, Nf1 + Cdkn2a lesions whereas loss of RABL6A caused upregulation of the CDK inhibitor, p27, in all tumors. Paradoxically, both models displayed elevated Myc protein and Ki67 staining in terminal tumors lacking RABL6A. In Nf1 + p53 tumors, cellular atypia and polyploidy were evident and increased by RABL6A loss. Conclusions These findings demonstrate that RABL6A is required for optimal progression of NF1 mutant MPNSTs in vivo in both Cdkn2a and p53 inactivated settings. However, sustained RABL6A loss may provide selective pressure for unwanted alterations, including increased Myc, cellular atypia, and polyploidy, that ultimately promote a hyper-proliferative tumor phenotype akin to drug-resistant lesions.
Collapse
Affiliation(s)
- Jordan L Kohlmeyer
- Molecular Medicine Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- The Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, Iowa, USA
| | - Courtney A Kaemmer
- The Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, Iowa, USA
| | - Joshua J Lingo
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
| | - Ellen Voigt
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
| | - Mariah R Leidinger
- The Department of Pathology, The University of Iowa, Iowa City, Iowa, USA
| | - Gavin R McGivney
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
| | - Amanda Scherer
- The Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | - David J Gordon
- Molecular Medicine Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
- The Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, USA
| | - Patrick Breheny
- Department of Biostatistics, The University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, USA
| | - David K Meyerholz
- The Department of Pathology, The University of Iowa, Iowa City, Iowa, USA
| | - Munir R Tanas
- Molecular Medicine Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- The Department of Pathology, The University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, USA
| | - Rebecca D Dodd
- Molecular Medicine Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
- The Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, USA
| | - Dawn E Quelle
- Molecular Medicine Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
- The Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, Iowa, USA
- The Department of Pathology, The University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|