1
|
Weiner HL. Immune mechanisms and shared immune targets in neurodegenerative diseases. Nat Rev Neurol 2025; 21:67-85. [PMID: 39681722 DOI: 10.1038/s41582-024-01046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The immune system plays a major part in neurodegenerative diseases. In some, such as multiple sclerosis, it is the primary driver of the disease. In others, such as Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, it has an amplifying role. Immunotherapeutic approaches that target the adaptive and innate immune systems are being explored for the treatment of almost all neurological diseases, and the targets and approaches are often common across diseases. Microglia are the primary immune cells in the brain that contribute to disease pathogenesis, and are consequently a common immune target for therapy. Other therapeutic approaches target components of the peripheral immune system, such as regulatory T cells and monocytes, which in turn act within the CNS. This Review considers in detail how microglia, monocytes and T cells contribute to the pathogenesis of multiple sclerosis, Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, and their potential as shared therapeutic targets across these diseases. The microbiome is also highlighted as an emerging therapeutic target that indirectly modulates the immune system. Therapeutic approaches being developed to target immune function in neurodegenerative diseases are discussed, highlighting how immune-based approaches developed to treat one disease could be applicable to multiple other neurological diseases.
Collapse
Affiliation(s)
- Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Yildiz O, Hunt GP, Schroth J, Dhillon G, Spargo TP, Al-Chalabi A, Koks S, Turner MR, Shaw PJ, Henson SM, Iacoangeli A, Malaspina A. Lipid-mediated resolution of inflammation and survival in amyotrophic lateral sclerosis. Brain Commun 2025; 7:fcae402. [PMID: 39816195 PMCID: PMC11733686 DOI: 10.1093/braincomms/fcae402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/26/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025] Open
Abstract
Neuroinflammation impacts on the progression of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. Specialized pro-resolving mediators trigger the resolution of inflammation. We investigate the specialized pro-resolving mediator blood profile and their receptors' expression in peripheral blood mononuclear cells in relation to survival in ALS. People living with ALS (pwALS) were stratified based on bulbar versus limb onset and on key progression metrics using a latent class model, to separate faster progressing from slower progressing ALS. Specialized pro-resolving mediator blood concentrations were measured at baseline and in one additional visit in 20 pwALS and 10 non-neurological controls (Cohort 1). Flow cytometry was used to study the GPR32 and GPR18 resolvin receptors' expression in peripheral blood mononuclear cells from 40 pwALS and 20 non-neurological controls (Cohort 2) at baseline and in two additional visits in 17 pwALS. Survival analysis was performed using Cox proportional hazards models, including known clinical predictors and GPR32 and GPR18 mononuclear cell expression. Differential expression and linear discriminant analyses showed that plasma resolvins were able to distinguish phenotypic variants of ALS from non-neurological controls. RvE3 was elevated in blood from pwALS, whilst RvD1, RvE3, RvT4 and RvD1n-3 DPA were upregulated in A-S and RvD2 in A-F. Compared to non-neurological controls, GPR32 was upregulated in monocytes expressing the active inflammation-suppressing CD11b+ integrin from fast-progressing pwALS, including those with bulbar onset disease (P < 0.0024), whilst GPR32 and GPR18 were downregulated in most B and T cell subtypes. Only GPR18 was upregulated in naïve double positive Tregs, memory cytotoxic Tregs, senescent late memory B cells and late senescent CD8+ T cells from pwALS compared to non-neurological controls (P < 0.0431). Higher GPR32 and GPR18 median expression in blood mononuclear cells was associated with longer survival, with GPR32 expression in classical monocytes (hazard ratio: 0.11, P = 0.003) and unswitched memory B cells (hazard ratio: 0.44, P = 0.008) showing the most significant association, along with known clinical predictors. Low levels of resolvins and downregulation of their membrane receptors in blood mononuclear cells are linked to a faster progression of ALS. Higher mononuclear cell expression of resolvin receptors is a predictor of longer survival. These findings suggest a lipid-mediated neuroprotective response that could be harnessed to develop novel therapeutic strategies and biomarkers for ALS.
Collapse
Affiliation(s)
- Ozlem Yildiz
- Neuromuscular Department, Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Neuroscience and Trauma, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Guy P Hunt
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, UK
- Perron Institute for Neurological and Translational Science, Research Institute in Nedlands, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
| | - Johannes Schroth
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Gurleen Dhillon
- Neuroscience and Trauma, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Thomas P Spargo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, UK
- Maurice Wohl Clinical Neuroscience Institute, King’s College Hospital, London SE5 9RS, UK
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Research Institute in Nedlands, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 7JX, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Sian M Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King’s College London, London SE5 8AF, UK
| | - Andrea Malaspina
- Neuromuscular Department, Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Neuroscience and Trauma, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
3
|
Kodosaki E, Bell R, Sogorb-Esteve A, Wiltshire K, Zetterberg H, Heslegrave A. More than microglia: myeloid cells and biomarkers in neurodegeneration. Front Neurosci 2024; 18:1499458. [PMID: 39544911 PMCID: PMC11560917 DOI: 10.3389/fnins.2024.1499458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
The role of myeloid cells (granulocytes and monocytes) in neurodegeneration and neurodegenerative disorders (NDD) is indisputable. Here we discuss the roles of myeloid cells in neurodegenerative diseases, and the recent advances in biofluid and imaging myeloid biomarker research with a focus on methods that can be used in the clinic. For this review, evidence from three neurodegenerative diseases will be included, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We discuss the potential for these biomarkers to be used in humans with suspected NDD as prognostic, diagnostic, or monitoring tools, identify knowledge gaps in literature, and propose potential approaches to further elucidate the role of myeloid cells in neurodegeneration and better utilize myeloid biomarkers in the understanding and treatment of NDD.
Collapse
Affiliation(s)
- Eleftheria Kodosaki
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Rosie Bell
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at UCL, London, United Kingdom
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Katharine Wiltshire
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong SAR, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| |
Collapse
|
4
|
Gu R, Pan J, Awan MUN, Sun X, Yan F, Bai L, Bai J. The major histocompatibility complex participates in Parkinson's disease. Pharmacol Res 2024; 203:107168. [PMID: 38583689 DOI: 10.1016/j.phrs.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and the aggregation of alpha-synuclein (α-syn). The central nervous system (CNS) has previously been considered as an immune-privileged area. However, studies have shown that the immune responses are involved in PD. The major histocompatibility complex (MHC) presents antigens from antigen-presenting cells (APCs) to T lymphocytes, immune responses will be induced. MHCs are expressed in microglia, astrocytes, and dopaminergic neurons. Single nucleotide polymorphisms in MHC are related to the risk of PD. The aggregated α-syn triggers the expression of MHCs by activating glia cells. CD4+ and CD8+ T lymphocytes responses and microglia activation are detected in brains of PD patients. In addiction immune responses further increase blood-brain barrier (BBB) permeability and T cell infiltration in PD. Thus, MHCs are involved in PD through participating in immune and inflammatory responses.
Collapse
Affiliation(s)
- Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianyu Pan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Maher Un Nisa Awan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; Department of Neurology, The Affiliated Hospital of Yunnan University, Kunming 650500, China
| | - Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fang Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
5
|
Blank-Stein N, Mass E. Macrophage and monocyte subsets in response to ischemic stroke. Eur J Immunol 2023; 53:e2250233. [PMID: 37467166 DOI: 10.1002/eji.202250233] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality. Despite extensive efforts in stroke research, the only pharmacological treatment currently available is arterial recanalization, which has limited efficacy only in the acute phase of stroke. The neuroinflammatory response to stroke is believed to provide a wider time window than recanalization and has therefore been proposed as an attractive therapeutic target. In this review, we provide an overview of recent advances in the understanding of cellular and molecular responses of distinct macrophage populations following stroke, which may offer potential targets for therapeutic interventions. Specifically, we discuss the role of local responders in neuroinflammation, including the well-studied microglia as well as the emerging players, border-associated macrophages, and macrophages originating from the skull bone marrow. Additionally, we focus on the behavior of monocytes stemming from distant tissues such as the bone marrow and spleen. Finally, we highlight aging as a crucial factor modulating the immune response, which is often neglected in animal studies.
Collapse
Affiliation(s)
- Nelli Blank-Stein
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Lin LY, Juillard P, Hawke S, Marsh-Wakefield F, Grau GE. Oral Cladribine Impairs Intermediate, but Not Conventional, Monocyte Transmigration in Multiple Sclerosis Patients across a Model Blood-Brain Barrier. Int J Mol Sci 2023; 24:ijms24076487. [PMID: 37047460 PMCID: PMC10094666 DOI: 10.3390/ijms24076487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
Multiple sclerosis (MS) is a disease in which the immune system damages components of the central nervous system (CNS), leading to the destruction of myelin and the formation of demyelinating plaques. This often occurs in episodic “attacks” precipitated by the transmigration of leukocytes across the blood-brain barrier (BBB), and repeated episodes of demyelination lead to substantial losses of axons within and removed from plaques, ultimately leading to progressive neurological dysfunction. Within leukocyte populations, macrophages and T and B lymphocytes are the predominant effectors. Among current immunotherapies, oral cladribine’s impact on lymphocytes is well characterised, but little is known about its impact on other leukocytes such as monocytes and dendritic cells (DCs). The aim of this study was to determine the transmigratory ability of monocyte and DC subsets in healthy subjects and untreated and cladribine-treated relapse-remitting MS (RRMS) patients using a well-characterised model of the BBB. Peripheral blood mononuclear cells from subjects were added to an in vitro transmigration assay to assess cell migration. Our findings show that while prior treatment with oral cladribine inhibits the migration of intermediate monocytes, it has no impact on the transmigration of DC subsets. Overall, our data indicate a previously unrecognised role of cladribine on intermediate monocytes, known to accumulate in the brain active MS lesions.
Collapse
Affiliation(s)
- Linda Y. Lin
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pierre Juillard
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Simon Hawke
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Central West Neurology and Neurosurgery, Orange, NSW 2800, Australia
| | - Felix Marsh-Wakefield
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Liver Injury and Cancer Program, Centenary Institute, Sydney, NSW 2006, Australia
- Human Cancer and Viral Immunology Laboratory, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (F.M.-W.); (G.E.G.)
| | - Georges E. Grau
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (F.M.-W.); (G.E.G.)
| |
Collapse
|
7
|
Bearoff F, Dhavale D, Kotzbauer P, Kortagere S. Aggregated alpha-synuclein transcriptionally activates pro-inflammatory canonical and non-canonical NF-κB signaling pathways in peripheral monocytic cells. Mol Immunol 2023; 154:1-10. [PMID: 36571978 PMCID: PMC9905308 DOI: 10.1016/j.molimm.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by chronic neuroinflammation, loss of dopaminergic neurons in the substantia nigra, and in several cases accumulation of alpha-synuclein fibril (α-syn) containing Lewy-bodies (LBs). Peripheral inflammation may play a causal role in inducing and perpetuating neuroinflammation in PD and accumulation of fibrillar α-syn has been reported at several peripheral sites including the gut and liver. Peripheral fibrillar α-syn may induce activation of monocytes via recognition by toll-like receptors (TLRs) and stimulation of downstream NF-κB signaling; however, the specific mechanism by which this occurs is not defined. In this study we utilized the THP-1 monocytic cell line to model the peripheral transcriptional response to preformed fibrillar (PFF) α-syn. Compared to monomeric α-syn, PFF α-syn displays overt inflammatory gene upregulation and pathway activation including broad pan-TLR signaling pathway activation and increases in TNF and IL1B gene expression. Notably, the non-canonical NF-κB signaling pathway gene and PD genome wide association study (GWAS) candidate NFKB2 was upregulated. Additionally, non-canonical NF-κB activation-associated RANK and CD40 pathways were also upregulated. Transcriptional-phenotype analysis suggests PFFs induce transcriptional programs associated with differentiation of monocytes towards macrophages and osteoclasts via non-canonical NF-κB signaling as a potential mechanism in which myeloid/monocyte cells may contribute to peripheral inflammation and pathogenesis in PD.
Collapse
Affiliation(s)
- Frank Bearoff
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Dhruva Dhavale
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Paul Kotzbauer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
8
|
Chi L, Cheng X, Lin L, Yang T, Sun J, Feng Y, Liang F, Pei Z, Teng W. Porphyromonas gingivalis-Induced Cognitive Impairment Is Associated With Gut Dysbiosis, Neuroinflammation, and Glymphatic Dysfunction. Front Cell Infect Microbiol 2021; 11:755925. [PMID: 34926316 PMCID: PMC8672439 DOI: 10.3389/fcimb.2021.755925] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Background Periodontal pathogen and gut microbiota are closely associated with the pathogenesis of Alzheimer's disease (AD). Porphyromonas gingivalis (Pg), the keystone periodontal pathogen, can induce cognitive impairment. The gut has a connection and communication with the brain, which is an important aspect of the gut-brain axis (GBA). In the present study, we investigate whether Pg induces cognitive impairment through disturbing the GBA. Methods In this study, Pg was orally administered to mice, three times a week for 1 month. The effects of Pg administration on the gut and brain were evaluated through behaviors, gut microbiota, immune cells, glymphatic pathway clearance, and neuroinflammation. Results Pg induced cognitive impairment and dysbiosis of gut microbiota. The α-diversity parameters did not show significant change after Pg administration. The β-diversity demonstrated that the gut microbiota compositions were different between the Pg-administered and control groups. At the species level, the Pg group displayed a lower abundance of Parabacteroides gordonii and Ruminococcus callidus than the control group, but a higher abundance of Mucispirillum schaedleri. The proportions of lymphocytes in the periphery and myeloid cells infiltrating the brain were increased in Pg-treated animals. In addition, the solute clearance efficiency of the glymphatic system decreased. Neurons in the hippocampus and cortex regions were reduced in mice treated with Pg. Microglia, astrocytes, and apoptotic cells were increased. Furthermore, amyloid plaque appeared in the hippocampus and cortex regions in Pg-treated mice. Conclusions These findings indicate that Pg may play an important role in gut dysbiosis, neuroinflammation, and glymphatic system impairment, which may in turn lead to cognitive impairment.
Collapse
Affiliation(s)
- Li Chi
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiao Cheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lishan Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Tao Yang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jianbo Sun
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yiwei Feng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengyin Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Wei Teng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Immunomodulatory Effects Associated with Cladribine Treatment. Cells 2021; 10:cells10123488. [PMID: 34943995 PMCID: PMC8700070 DOI: 10.3390/cells10123488] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Cladribine is a synthetic deoxyadenosine analogue with demonstrated efficacy in patients with relapsing-remitting multiple sclerosis (MS). The main mechanism of action described for cladribine is the induction of a cytotoxic effect on lymphocytes, leading to a long-term depletion of peripheral T and B cells. Besides lymphocyte toxicity, the mode of action may include immunomodulatory mechanisms affecting other cells of the immune system. In order to induce its beneficial effects, cladribine is phosphorylated inside the cell by deoxycytidine kinase (DCK) to its active form. However, the mechanism of action of cladribine may also include immunomodulatory pathways independent of DCK activation. This in vitro study was designed to explore the impact of cladribine on peripheral blood mononuclear cells (PBMC) subsets, and to assess whether the immunomodulatory mechanisms induced by cladribine depend on the activation of the molecule. To this end, we obtained PBMCs from healthy donors and MS patients and performed proliferation, apoptosis and activation assays with clinically relevant concentrations of cladribine in DCK-dependent and -independent conditions. We also evaluated the effect of cladribine on myeloid lineage-derived cells, monocytes and dendritic cells (DCs). Cladribine decreased proliferation and increased apoptosis of lymphocyte subsets after prodrug activation via DCK. In contrast, cladribine induced a decrease in immune cell activation through both DCK-dependent and -independent pathways (not requiring prodrug activation). Regarding monocytes and DCs, cladribine induced cytotoxicity and impaired the activation of classical monocytes, but had no effect on DC maturation. Taken together, these data indicate that cladribine, in addition to its cytotoxic function, can mediate immunomodulation in different immune cell populations, by regulating their proliferation, maturation and activation.
Collapse
|