1
|
Nguyen GH, Noh M, Kang JM, Miller AA, Huang M, Kim J, Lee JY, Chung S, Wang H, Calin GA, Ju C, Eltzschig HK, Banasavadi-Siddegowda Y, Zhao Z, Yoo JY, Lee TJ. Simultaneous Targeting of Tumor Cells and Tumor-Associated Macrophages To Reprogram Glioblastoma Using Trypsinized Extracellular Vesicles Carrying Tumor Suppressive MicroRNA. NANO LETTERS 2025. [PMID: 40357748 DOI: 10.1021/acs.nanolett.5c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Glioblastoma (GBM) remains difficult to treat due to poor drug delivery across the blood-brain barrier and an immunosuppressive tumor microenvironment (TME). Tumor-suppressive microRNAs (miRNAs) offer a promising strategy to reprogram both tumor cells and the TME, but inefficient delivery systems limit their clinical application. We previously reported that tumor-suppressive miR-138 regresses tumor growth in preclinical GBM models. Here, we demonstrate that trypsin digestion of extracellular vesicles (EVs) enhances labeling efficiency with folate (FA), enhancing selective targeting of folate receptor (FR)-positive GBM cells and enabling simultaneous targeting of tumor-associated macrophages (TAMs). FA-labeled trypsinized EVs (tEVs) loaded with miR-138 inhibit tumor growth, depolarize TAMs, and enhance antitumor immunity. This study represents the first preclinical attempt to modulate tumor cells and innate immunity via miRNA-loaded tEVs, offering a novel and more effective therapeutic approach to GBM treatment.
Collapse
Affiliation(s)
- Grace H Nguyen
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - MinHye Noh
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Jin Muk Kang
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Alexandra A Miller
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center-UT Health at Houston, 6767 Bertner Avenue, Houston, Texas 77030, United States
| | - Minxin Huang
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Jiyeon Kim
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Jeong-Yeon Lee
- Department of Pathology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Sangwoon Chung
- Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, 473 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Hongyu Wang
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, 6901 Bertner Avenue, Houston, Texas 77030, United States
| | - George A Calin
- Department of Translational Molecular Pathology, Division of Pathology-Lab Medicine, Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Cynthia Ju
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Holger K Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Yeshavanth Banasavadi-Siddegowda
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, Texas 77030, United States
| | - Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center-UT Health at Houston, 6767 Bertner Avenue, Houston, Texas 77030, United States
| | - Tae Jin Lee
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center-UT Health at Houston, 6767 Bertner Avenue, Houston, Texas 77030, United States
| |
Collapse
|
2
|
Sandhanam K, Tamilanban T. Unraveling the noncoding RNA landscape in glioblastoma: from pathogenesis to precision therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9475-9502. [PMID: 39007929 DOI: 10.1007/s00210-024-03265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Glioblastoma (GBM) is an aggressive type IV brain tumor that originates from astrocytes and has a poor prognosis. Despite intensive research, survival rates have not significantly improved. Noncoding RNAs (ncRNAs) are emerging as critical regulators of carcinogenesis, progression, and increased treatment resistance in GBM cells. They influence angiogenesis, migration, epithelial-to-mesenchymal transition, and invasion in GBM cells. ncRNAs, such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are commonly dysregulated in GBM. miRNAs, such as miR-21, miR-133a, and miR-27a-3p, are oncogenes that increase cell proliferation, metastasis, and migration by targeting TGFBR1 and BTG2. In contrast, lncRNAs, such as HOXD-AS2 and LINC00511, are oncogenes that increase the migration, invasion, and proliferation of cells. CircRNAs, such as circ0001730, circENTPD7, and circFOXO3, are oncogenes responsible for cell growth, angiogenesis, and viability. Developing novel therapeutic strategies targeting ncRNAs, cell migration, and angiogenesis is a promising approach for GBM. By targeting these dysregulated ncRNAs, we can potentially restore a healthy balance in gene expression and influence disease progression. ncRNAs abound within GBM, demonstrating significant roles in governing the growth and behavior of these tumors. They may also be useful as biomarkers or targets for therapy. The use of morpholino oligonucleotides (MOs) suppressing the oncogene expression of HOTAIR, BCYRN1, and cyrano, antisense oligonucleotides (ASOs) suppressing the expression of ncRNAs such as MALAT1 and miR-10b, locked nucleic acids (LNAs) suppressing miR-21, and peptide nucleic acids (PNAs) suppressing the expression of miR-155 inhibited the PI3K pathway, tumor growth, angiogenesis, proliferation, migration, and invasion. Targeting oncogenic ncRNAs with RNA-interfering strategies such as MOs, ASOs, LNAs, CRISPR-Cas9 gene editing, and PNA approaches may represent a promising therapeutic strategy for GBM. This review emphasizes the critical role of ncRNAs in GBM pathogenesis, as well as the potential for new therapeutic strategies targeting these pathways to improve the prognosis and quality of life for GBM patients.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.
| |
Collapse
|
3
|
Tang S, Kong P, Li Q, Tang X. Circ_0071589 contributes to growth, angiogenesis, and metastasis of colorectal cancer through regulating miR-296-5p/EN2 axis. J Biochem Mol Toxicol 2023; 37:e23509. [PMID: 37670439 DOI: 10.1002/jbt.23509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/01/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2023]
Abstract
To explore the function and regulation mechanism of circ_0071589 in colorectal cancer (CRC). The expression levels of circ_0071589, microRNA-296-5p (miR-296-5p), and Engrailed-2 (EN2) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot was performed to check the protein levels of EN2 and apoptosis-related proteins. Cell colony formation and 5-Ethynyl-29-deoxyuridine (EdU) assay were used to exhibit cell proliferation. Cell apoptosis was shown by flow cytometry. Tube formation assay manifested the angiogenesis ability of CRC cells. Transwell assay demonstrated cell migration and invasion. The interaction between miR-296-5p and circ_0071589 or EN2 was identified by dual-luciferase reporter assay. The effect of circ_0071589 on tumor formation was demonstrated by in vivo tumor formation experiments. Immunohistochemical (IHC) assay was used to detect the positive cell rate of Ki67 in tumor tissue. Circ_0071589 was upregulated in CRC tissue and cells. Circ_0071589 knockdown repressed CRC cells proliferation, angiogenesis, migration, invasion, and promoted cell apoptosis. MiR-296-5p was downregulated in CRC tissue and cells. And miR-296-5p inhibitor could reverse the malignant phenotypes and angiogenesis inhibition of CRC cells caused by circ_0071589 knockdown. Additionally, miR-296-5p decreased CRC cell colony formation, EdU-positive cells, angiogenesis, and increased cell apoptosis through reducing the expression level of EN2. Finally, circ_0071589 silencing inhibited tumor formation in vivo. Circ_0071589 upregulated EN2 expression through sponging miR-296-5p, thereby promoting the malignant phenotype and angiogenesis of CRC cells, which provided a new target for the treatment of CRC.
Collapse
Affiliation(s)
- Shiyu Tang
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Pengfei Kong
- Department Of Anorectal, Intergrated Western And Chinese Colorectal And Anal Surgery, Affiliated Hospital Of North Sichuan Medical College, Sichuan, China
| | - Qian Li
- North Sichuan Medical College, Sicchuan, China
| | - Xuegui Tang
- Department Of Anorectal, Intergrated Western And Chinese Colorectal And Anal Surgery, Affiliated Hospital Of North Sichuan Medical College, Sichuan, China
| |
Collapse
|
4
|
Rasoolnezhad M, Safaralizadeh R, Hosseinpour Feizi MA, Banan-Khojasteh SM, Roshani Asl E, Lotfinejad P, Baradaran B. MiR-138-5p improves the chemosensitivity of MDA-MB-231 breast cancer cell line to paclitaxel. Mol Biol Rep 2023; 50:8407-8420. [PMID: 37620737 DOI: 10.1007/s11033-023-08711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Chemotherapy is a predominant strategy for breast cancer (BC) treatment and paclitaxel (PTX) has been known as a conventional chemotherapeutic drug. However, insensitivity of BC cells to PTX limits the anti-tumor effects of this agent. MicroRNAs are closely related to BC which are suggested as therapeutic factors in the combination therapy of BC. We examined the possible efficacy of miR-138-5p restoration in combination with PTX to impove BC treatment. METHODS The human breast cancer cell line MDA-MB-231 was transfected with miR-138-5p mimics and treated with PTX, in a combined or separate manner. The MTT assay was accomplished to determine inhibitory doses of PTX. Annexin V/PI assay and DAPI staining were applied to evaluate apoptosis. Flow cytometry was applied to determine cells arrested in different phases of the cell-cycle. Expression levels of molecular factors involved in cell migration, proliferation, apoptosis, and cell cycle were determined via western blotting and qRT-PCR. RESULTS MiR-138-5p combined with PTX suppressed cell migration via modulating MMP2, E-cadherin, and vimentin and sustained colony formation and proliferation by downregulation of the PI3K/AKT pathway. qRT-PCR showed that miR-138-5p increases BC chemosensitivity to PTX by regulating the apoptosis factors, including Bcl-2, Bax, Caspase 3, and Caspase 9. Moreover, miR-138-5p restoration and paclitaxel therapy combined arrest the cells in the sub-G1 and G1 phases of cell cycle by regulating p21, CCND1, and CDK4. CONCLUSIONS Restored miR-138-5p intensified the chemosensitivity of MDA-MB-231 cell line to PTX, and the combination of miR-138-5p with PTX might represent a novel approach in BC treatment.
Collapse
Affiliation(s)
- Mina Rasoolnezhad
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | | | | | - Elmira Roshani Asl
- Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Parisa Lotfinejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Dai L, Liang W, Shi Z, Li X, Zhou S, Hu W, Yang Z, Wang X. Systematic characterization and biological functions of non-coding RNAs in glioblastoma. Cell Prolif 2022; 56:e13375. [PMID: 36457281 PMCID: PMC9977673 DOI: 10.1111/cpr.13375] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant and aggressive type of glioma. Non-coding RNAs (ncRNAs) are RNAs that do not encode proteins but widely exist in eukaryotic cells. The common characteristics of these RNAs are that they can all be transcribed from the genome without being translated into proteins, thus performing biological functions, particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs. Studies have found that ncRNAs are associated with the occurrence and development of GBM, and there is a complex regulatory network among ncRNAs, which can regulate cell proliferation, migration, apoptosis and differentiation, thus provide a basis for the development of highly specific diagnostic tools and therapeutic strategies in the future. The present review aimed to comprehensively describe the biogenesis, general features and functions of regulatory ncRNAs in GBM, and to interpret the potential biological functions of these ncRNAs in GBM as well as their impact on clinical diagnosis, treatment and prognosis and discusses the potential mechanisms of these RNA subtypes leading to cancer in order to contribute to the better design of personalized GBM therapies in the future.
Collapse
Affiliation(s)
- Lirui Dai
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Wulong Liang
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Zimin Shi
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Xiang Li
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Shaolong Zhou
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Weihua Hu
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Zhuo Yang
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Xinjun Wang
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| |
Collapse
|