1
|
Florez-Vargas O, Ho M, Hogshead MH, Papenberg BW, Lee CH, Forsythe K, Jones K, Luo W, Teshome K, Blauwendraat C, Billingsley KJ, Kolmogorov M, Meredith M, Paten B, Chari R, Zhang C, Schneekloth JS, Machiela MJ, Chanock SJ, Gadalla SM, Savage SA, Mbulaiteye SM, Prokunina-Olsson L. Genetic regulation of TERT splicing affects cancer risk by altering cellular longevity and replicative potential. Nat Commun 2025; 16:1676. [PMID: 39956830 PMCID: PMC11830802 DOI: 10.1038/s41467-025-56947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
The chromosome 5p15.33 region, which encodes telomerase reverse transcriptase (TERT), harbors multiple germline variants identified by genome-wide association studies (GWAS) as risk for some cancers but protective for others. Here, we characterize a variable number tandem repeat within TERT intron 6, VNTR6-1 (38-bp repeat unit), and detect a strong link between VNTR6-1 alleles (Short: 24-27 repeats, Long: 40.5-66.5 repeats) and GWAS signals rs2242652 and rs10069690 within TERT intron 4. Bioinformatics analyses reveal that rs10069690-T allele increases intron 4 retention while VNTR6-1-Long allele expands a polymorphic G-quadruplex (G4, 35-113 copies) within intron 6, with both variants contributing to variable TERT expression through alternative splicing and nonsense-mediated decay. In two cell lines, CRISPR/Cas9 deletion of VNTR6-1 increases the ratio of TERT-full-length (FL) to the alternative TERT-β isoform, promoting apoptosis and reducing cell proliferation. In contrast, treatment with G4-stabilizing ligands shifts splicing from TERT-FL to TERT-β isoform, implicating VNTR6-1 as a splicing switch. We associate the functional variants VNTR6-1, rs10069690, and their haplotypes with multi-cancer risk and age-related telomere shortening. By regulating TERT splicing, these variants may contribute to fine-tuning cellular longevity and replicative potential in the context of stress due to tissue-specific endogenous and exogenous exposures, thereby influencing the cancer risk conferred by this locus.
Collapse
Affiliation(s)
- Oscar Florez-Vargas
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Michelle Ho
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Maxwell H Hogshead
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Brenen W Papenberg
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Chia-Han Lee
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Kaitlin Forsythe
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kedest Teshome
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute of Aging and National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Kimberly J Billingsley
- Center for Alzheimer's and Related Dementias, National Institute of Aging and National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Mikhail Kolmogorov
- Cancer Data Science Laboratory, CCR, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chi Zhang
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, CCR, National Cancer Institute, Frederick, MD, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Stephen J Chanock
- Laboratory of Genetic Susceptibility, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Sam M Mbulaiteye
- Infections and Immunoepidemiology Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | | |
Collapse
|
2
|
Baylie T, Jemal M, Baye G, Getinet M, Amare GA, Adugna A, Abebaw D, Hibstu Z, Tegegne BA, Gugsa E, Adane T, Getie G, Ashenef B, Sinamaw D. The role of telomere and telomerase in cancer and novel therapeutic target: narrative review. Front Oncol 2025; 15:1542930. [PMID: 40151802 PMCID: PMC11947687 DOI: 10.3389/fonc.2025.1542930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/27/2025] [Indexed: 03/29/2025] Open
Abstract
Telomeres are dynamic complexes at the ends of chromosomes that are made up of protective proteins and tandem repeating DNA sequences. In the large majority of cancer cells, telomere length is maintained by telomerase, an enzyme that elongates telomeres. Telomerase activation is seen in the majority of cancer, which permits uncontrol cell proliferation. About 90% of human malignancies show telomere dysfunction and telomerase reactivation; as a result, telomerase activation plays a special role as a practically universal stage on the way to malignancy. This review understands the structural and functional of telomere and telomerase, mechanisms of telomerase activation in oncogenesis, biomarkers and therapeutic targets. Therapeutic strategies targeting telomerase, including antisense oligonucleotides, G-quadruplex stabilizers, immunotherapy, small-molecule inhibitors, gene therapy, Telomerase-Responsive Drug Release System, have shown promise in preclinical and clinical settings. Advances in telomere biology not only illuminate the complex interplay between telomeres, telomerase, and cancer progression but also open avenues for innovative, targeted cancer therapies.
Collapse
Affiliation(s)
- Temesgen Baylie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gelagay Baye
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Adugna
- Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Desalegn Abebaw
- Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu
- Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Endalkachew Gugsa
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tadegew Adane
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gedefaw Getie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Baye Ashenef
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Deresse Sinamaw
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
3
|
Feijing Z, Sun Z, Cheng L, Dong Y. Leptin Modulates Ovarian Granulosa Cell Apoptosis by Regulating Telomerase Activity and Telomere Length in Polycystic Ovary Syndrome. J Transl Med 2025; 105:102169. [PMID: 39491652 DOI: 10.1016/j.labinv.2024.102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Leptin (LEP) is implicated in the pathogenesis of polycystic ovary syndrome (PCOS). This study investigates the mechanism of LEP in PCOS. The baseline information of 80 PCOS patients and matched controls was analyzed, with serum and follicular fluid (FF) LEP and LEP receptor (LEPR) levels, telomerase activity, and relative telomere length (TL) measured. The correlation of FF LEP with telomerase activity and TL was analyzed. The viability and apoptosis of KGN cells (the ovarian granulosa cells) treated with gradient LEP were assessed. LEP-LEPR interaction was examined. LEPR, v-myc avian myelocytomatosis viral oncogene homolog (c-MYC), and telomerase reverse transcriptase (TERT) levels and c-MYC protein expression in the TERT promoter region were determined. Nuclear c-MYC translocation was detected. LEP was upregulated in sera and FF of PCOS patients. FF LEP positively correlated with telomerase activity and TL. Low-concentration LEP facilitated KGN cell proliferation, and high-concentration LEP dose-dependently suppressed cell proliferation, promoted apoptosis, upregulated LEPR, and increased telomerase activity and relative TL. LEP-LEPR interaction upregulated c-MYC and facilitated its nuclear accumulation. c-MYC enrichment in the TERT promoter region upregulated TERT, altering telomerase activity and TL and inducing cell apoptosis. Briefly, LEP/LEPR activates c-MYC, modulates TERT expression, and increases telomerase activity and TL, thus inducing ovarian granulosa cell apoptosis and participating in PCOS.
Collapse
Affiliation(s)
- Zhou Feijing
- Reproductive Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhimin Sun
- Reproductive Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luyao Cheng
- Reproductive Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuezhi Dong
- Reproductive Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Tang W, Wang K, Feng Y, Tsui KH, Singh KK, Stout MB, Wang S, Wu M. Exploration of the mechanism and therapy of ovarian aging by targeting cellular senescence. LIFE MEDICINE 2025; 4:lnaf004. [PMID: 40110109 PMCID: PMC11916902 DOI: 10.1093/lifemedi/lnaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/22/2025] [Indexed: 03/22/2025]
Abstract
The ovary is a crucial gonadal organ that supports female reproductive and endocrine functions. Ovarian aging can result in decreased fertility and dysfunction across multiple organs. Research has demonstrated that cellular senescence in various cell types within the ovary can trigger a decline in ovarian function through distinct stress responses, resulting in ovarian aging. This review explores how cellular senescence may contribute to ovarian aging and reproductive failure. Additionally, we discuss the factors that cause ovarian cellular senescence, including the accumulation of advanced glycation end products, oxidative stress, mitochondrial dysfunction, DNA damage, telomere shortening, and exposure to chemotherapy. Furthermore, we discuss senescence in six distinct cell types, including oocytes, granulosa cells, ovarian theca cells, immune cells, ovarian surface epithelium, and ovarian endothelial cells, inside the ovary and explore their contribution to the accelerated ovarian aging. Lastly, we describe potential senotherapeutics for the treatment of ovarian aging and offer novel strategies for ovarian longevity.
Collapse
Affiliation(s)
- Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Kaichen Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yourong Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813779, Taiwan, China
- Department of Obstetrics and Gynecology, Yang-Ming University, Taipei 112304, Taiwan, China
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 900391, Taiwan, China
| | - Keshav K Singh
- Department of Genetics, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| |
Collapse
|
5
|
Kılıç NÖ, Kütük D, Öner Ç, Öztürk SA, Selam B, Çolak E. Molecular Markers in Embryo Non-Development: Analysis of Gene Expressions ( Ki-67, hTERT, HIF-1α) in Spent Embryo Culture Medium. Cells 2024; 13:2093. [PMID: 39768184 PMCID: PMC11674905 DOI: 10.3390/cells13242093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
An embryo culture medium is a specialized set of ambient conditions, technological equipment, and nutrients that embryos require to grow properly. We aimed to investigate the Ki-67, hTERT, and HIF-1α gene expression differences between developing and non-developing embryos in spent embryo culture medium. Ki-67, hTERT, and HIF-1α gene expressions were determined from the spent embryo culture medium containing developing and non-developing embryos of 20 normoresponder patients admitted to the Bahçeci Umut IVF Center. An increase in hTERT gene expression (p < 0.05) and a decrease in HIF-1α gene expression (p < 0.001) were observed in mediums of developing compared to the non-developing embryos. No difference was observed in Ki-67 gene expression (p > 0.05). While there was a correlation between Ki-67 and HIF-1α genes in the non-growing group (r < 0.01); no correlation was observed in the developing group (r > 0.05). Both normoresponder groups will be similar in terms of proliferation rate. The low HIF-1α expression that observed high telomerase activity in embryo development maintains continuity and avoids mechanisms that result in cell death. A molecular study of the embryo development in patients with similar characteristics may help to understand the pathogenesis of the disease and establish a diagnosis and specific treatment.
Collapse
Affiliation(s)
- Nergis Özlem Kılıç
- Department of Histology and Embryology, Medical Faculty, Maltepe University, 34844 İstanbul, Turkey; (N.Ö.K.); (D.K.); (S.A.Ö.)
| | - Duygu Kütük
- Department of Histology and Embryology, Medical Faculty, Maltepe University, 34844 İstanbul, Turkey; (N.Ö.K.); (D.K.); (S.A.Ö.)
- IVF Laboratory, Bahçeci Umut Assisted Reproduction Center, 34662 İstanbul, Turkey
| | - Çağrı Öner
- Department of Medical Biology, Medical Faculty, Kırklareli University, 39100 Kırklareli, Turkey;
| | - Senem Aslan Öztürk
- Department of Histology and Embryology, Medical Faculty, Maltepe University, 34844 İstanbul, Turkey; (N.Ö.K.); (D.K.); (S.A.Ö.)
- Department of Medical Laboratory Techniques, Vocational School, İstanbul Atlas University, 34408 İstanbul, Turkey
| | - Belgin Selam
- Department of Obstetrics and Gynecology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Ertuğrul Çolak
- Department of Biostatistics, Medical Faculty, Eskişehir Osmangazi University, 26040 Eskişehir, Turkey;
| |
Collapse
|
6
|
Lakshmanan M, Saini M, Nune M. Exploring the innovative application of cerium oxide nanoparticles for addressing oxidative stress in ovarian tissue regeneration. J Ovarian Res 2024; 17:241. [PMID: 39633503 PMCID: PMC11619646 DOI: 10.1186/s13048-024-01566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024] Open
Abstract
The female reproductive system dysfunction considerably affects the overall health of women and children on a global scale. Over the decade, the incidence of reproductive disorders has become a significant source of suffering for women. Infertility in women may be caused by a range of acquired and congenital abnormalities. Ovaries play a central role in the female reproductive function. Any defect in the normal functioning of these endocrine organs causes health issues and reproductive challenges extending beyond infertility, as the hormones interact with other tissues and biological processes in the body. The complex pathophysiology of ovarian disorders makes it a multifactorial disease. The key etiological factors associated with the diseases include genetic factors, hormonal imbalance, environmental and lifestyle factors, inflammatory conditions, oxidative stress, autoimmune diseases, metabolic factors, and age. Oxidative stress is a major contributor to disease development and progression affecting the oocyte quality, fertilization, embryo development, and implantation. The choice of treatment for ovarian disorders varies among individuals and has associated complications. Reproductive tissue engineering holds great promise for overcoming the challenges associated with the current therapeutic approach to tissue regeneration. Furthermore, incorporating nanotechnology into tissue engineering could offer an efficient treatment strategy. This review provides an overview of incorporating antioxidant nanomaterials for engineering ovarian tissue to address the disease recurrence and associated pathophysiology. Cerium oxide nanoparticles (CeO2 NPs) are prioritized for evaluation primarily due to their antioxidant properties. In conclusion, the review explores the potential applications of CeO2 NPs for effective and clinically significant ovarian tissue regeneration.
Collapse
Affiliation(s)
- Maya Lakshmanan
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Monika Saini
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029, India
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Xue H, Hu Z, Liu S, Zhang S, Yang W, Li J, Yan C, Zhang J, Zhang J, Lei X. The mechanism of NF-κB-TERT feedback regulation of granulosa cell apoptosis in PCOS rats. PLoS One 2024; 19:e0312115. [PMID: 39453929 PMCID: PMC11508119 DOI: 10.1371/journal.pone.0312115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 10/27/2024] Open
Abstract
Patients with Polycystic ovary syndrome (PCOS) have chronic low-grade ovarian inflammation. Inflammation can cause telomere dysfunction, and telomere and telomerase complex are also involved in regulating inflammation. However, the specific mechanisms of inflammatory signaling feedback and telomere-telomerase mutual regulation remain to be discovered. This study elucidates the role of Nuclear factor kappa-B (NF-κB)-Telomerase reverse transcriptase (TERT) feedback in PCOS granulosa cell apoptosis. Using letrozole and a high-fat diet, a PCOS rat model was established, along with a Lipopolysaccharide (LPS) -treated KGN cell inflammation model was established. NF-κB and TERT inhibitors (BAY 11-7082 and BIBR1532) were then administered to LPS-induced KGN cells. PCOS rats displayed disrupted estrous cycles, increased weight, elevated serum testosterone, cystic follicles, granulosa cell layer thinning, and reduced corpora lutea count (P are all less than 0.05). In PCOS rat ovaries, NF-κB, Interleukin-6 (IL-6), Tumor Necrosis Factor α (TNF-α), TERT, Bax, and Caspase-3 exhibited notable upregulation, while Bcl-2 decreased, with telomere elongation (P are all less than 0.05). There were significant correlations among NF-κB-related inflammatory factors, TERT and apoptotic factors, and they were positively correlated with Bax and Caspase-3, and negatively correlated with Bcl-2 (P are all less than 0.05). LPS-treated KGN cells demonstrated increased expression of inflammatory and pro-apoptotic factors, later restored post-treatment with NF-κB and TERT inhibitors (P are all less than 0.05). In conclusion, TERT may induce granulosa cell apoptosis by participating in the regulation of the NF-κB signaling pathway, thereby mediating the chronic inflammatory response of PCOS through downstream inflammatory factors IL-6 and TNF-α.
Collapse
Affiliation(s)
- Haoxuan Xue
- The First Affiliated Hospital, Gynecology & Obstetrics and Reproductive Medical Center, Clinical Anatomy and Reproductive Medicine Application Institute, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zecheng Hu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shun Liu
- The First Affiliated Hospital, Gynecology & Obstetrics and Reproductive Medical Center, Clinical Anatomy and Reproductive Medicine Application Institute, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wenqin Yang
- The First Affiliated Hospital, Gynecology & Obstetrics and Reproductive Medical Center, Clinical Anatomy and Reproductive Medicine Application Institute, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiasi Li
- The First Affiliated Hospital, Gynecology & Obstetrics and Reproductive Medical Center, Clinical Anatomy and Reproductive Medicine Application Institute, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chulin Yan
- The First Affiliated Hospital, Gynecology & Obstetrics and Reproductive Medical Center, Clinical Anatomy and Reproductive Medicine Application Institute, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiaming Zhang
- The First Affiliated Hospital, Gynecology & Obstetrics and Reproductive Medical Center, Clinical Anatomy and Reproductive Medicine Application Institute, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Zhang
- The First Affiliated Hospital, Gynecology & Obstetrics and Reproductive Medical Center, Clinical Anatomy and Reproductive Medicine Application Institute, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaocan Lei
- The First Affiliated Hospital, Gynecology & Obstetrics and Reproductive Medical Center, Clinical Anatomy and Reproductive Medicine Application Institute, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
8
|
Xu W, Sang S, Wang J, Guo S, Zhang X, Zhou H, Chen Y. Identification of telomere-related lncRNAs and immunological analysis in ovarian cancer. Front Immunol 2024; 15:1452946. [PMID: 39355254 PMCID: PMC11442270 DOI: 10.3389/fimmu.2024.1452946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Background Ovarian cancer (OC) is a global malignancy characterized by metastatic invasiveness and recurrence. Long non-coding RNAs (lncRNAs) and Telomeres are closely connected with several cancers, but their potential as practical prognostic markers in OC is less well-defined. Methods Relevant mRNA and clinical data for OC were sourced from The Cancer Genome Atlas (TCGA) database. The telomere-related lncRNAs (TRLs) prognostic model was established by univariate/LASSO/multivariate regression analyses. The effectiveness of the TRLs model was evaluated and measured via the nomogram. Additionally, immune infiltration, tumor mutational load (TMB), and drug sensitivity were evaluated. We validated the expression levels of prognostic genes. Subsequently, PTPRD-AS1 knockdown was utilized to perform the CCK8 assay, colony formation assay, transwell assay, and wound healing assay of CAOV3 cells. Results A six-TRLs prognostic model (PTPRD-AS1, SPAG5-AS1, CHRM3-AS2, AC074286.1, FAM27E3, and AC018647.3) was established, which can effectively predict patient survival rates and was successfully validated using external datasets. According to the nomogram, the model could effectively predict prognosis. Furthermore, we detected the levels of regulatory T cells and M2 macrophages were comparatively higher in the high-risk TRLs group, but the levels of activated CD8 T cells and monocytes were the opposite. Finally, the low-risk group was more sensitive to anti-cancer drugs. The mRNA levels of PTPRD-AS1, SPAG5-AS1, FAM27E3, and AC018647.3 were significantly over-expressed in OC cell lines (SKOV3, A2780, CAOV3) in comparison to normal IOSE-80 cells. AC074286.1 were over-expressed in A2780 and CAOV3 cells and CHRM3-AS2 only in A2780 cells. PTPRD-AS1 knockdown decreased the proliferation, cloning, and migration of CAOV3 cells. Conclusion Our study identified potential biomarkers for the six-TRLs model related to the prognosis of OC.
Collapse
Affiliation(s)
- Weina Xu
- Department of TCM, Zhoujiadu Community Health Service of Shanghai Pudong New Area, Shanghai, China
| | - Shuliu Sang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Wang
- Department of TCM, Zhoujiadu Community Health Service of Shanghai Pudong New Area, Shanghai, China
| | - Shanshan Guo
- Department of Gynecology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Zhang
- Department of Gynecology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailun Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijia Chen
- Department of Gynecology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Pańczyszyn A, Boniewska-Bernacka E, Wertel I, Sadakierska-Chudy A, Goc A. Telomeres and SIRT1 as Biomarkers of Gamete Oxidative Stress, Fertility, and Potential IVF Outcome. Int J Mol Sci 2024; 25:8652. [PMID: 39201341 PMCID: PMC11354255 DOI: 10.3390/ijms25168652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
The number of infertile couples undergoing in vitro fertilisation (IVF) has increased significantly. The efficacy of this procedure is contingent upon a multitude of factors, including gamete quality. One factor influencing gamete quality is oxidative stress, which leads to telomere damage and accelerates cellular ageing. Identifying new biomarkers that can predict the success of assisted reproduction techniques is a current relevant area of research. In this review, we discuss the potential role of SIRT1, a protein known to protect against oxidative stress and telomeres, which are responsible for genome stability, as biomarkers of gamete quality and assisted reproduction technique outcomes.
Collapse
Affiliation(s)
- Anna Pańczyszyn
- Institute of Medical Sciences, Department of Biology and Genetics, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland; (E.B.-B.); (A.G.)
| | - Ewa Boniewska-Bernacka
- Institute of Medical Sciences, Department of Biology and Genetics, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland; (E.B.-B.); (A.G.)
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Anna Sadakierska-Chudy
- Department of Genetics, Faculty of Medicine and Health Sciences, Collegium Medicum, Andrzej Frycz Modrzewski Krakow University, Gustawa Herlinga-Grudzinskiego 1, 30-705 Krakow, Poland;
| | - Anna Goc
- Institute of Medical Sciences, Department of Biology and Genetics, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland; (E.B.-B.); (A.G.)
| |
Collapse
|
10
|
Yang Q, Zhang J, Fan Z. Causal association between telomere length and female reproductive endocrine diseases: a univariable and multivariable Mendelian randomization analysis. J Ovarian Res 2024; 17:146. [PMID: 39010148 PMCID: PMC11247788 DOI: 10.1186/s13048-024-01466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND The relationship between leukocyte telomere length (LTL) and female reproductive endocrine diseases has gained significant attention and research interest in recent years. However, there is still limited understanding of the exact impacts of LTL on these diseases. Therefore, the primary objective of this study was to investigate the genetic causal association between LTL and female reproductive endocrine diseases by employing Mendelian randomization (MR) analysis. METHODS Instruments for assessing genetic variation associated with exposure and outcome were derived from summary data of published genome-wide association studies (GWAS). Inverse-variance weighted (IVW) was utilized as the main analysis method to investigate the causal relationship between LTL and female reproductive endocrine diseases. The exposure data were obtained from the UK Biobanks GWAS dataset, comprising 472,174 participants of European ancestry. The outcome data were acquired from the FinnGen consortium, including abnormal uterine bleeding (menorrhagia and oligomenorrhea), endometriosis (ovarian endometrioma and adenomyosis), infertility, polycystic ovary syndrome (PCOS), premature ovarian insufficiency (POI) and premenstrual syndrome (PMS). Furthermore, to account for potential confounding factors such as smoking, alcohol consumption, insomnia, body mass index (BMI) and a history of pelvic inflammatory disease (PID), multivariable MR (MVMR) analysis was also conducted. Lastly, a series of pleiotropy tests and sensitivity analyses were performed to ensure the reliability and robustness of our findings. P < 0.0063 was considered to indicate statistically significant causality following Bonferroni correction. RESULTS Our univariable MR analysis demonstrated that longer LTL was causally associated with an increased risk of menorrhagia (IVW: odds ratio [OR]: 1.1803; 95% confidence interval [CI]: 1.0880-1.2804; P = 0.0001) and ovarian endometrioma (IVW: OR: 1.2946; 95%CI: 1.0970-1.5278; P = 0.0022) at the Bonferroni significance level. However, no significant correlation was observed between LTL and oligomenorrhea (IVW: OR: 1.0124; 95%CI: 0.7350-1.3946; P = 0.9398), adenomyosis (IVW: OR: 1.1978; 95%CI: 0.9983-1.4372; P = 0.0522), infertility (IVW: OR: 1.0735; 95%CI: 0.9671-1.1915; P = 0.1828), PCOS (IVW: OR: 1.0633; 95%CI: 0.7919-1.4278; P = 0.6829), POI (IVW: OR: 0.8971; 95%CI: 0.5644-1.4257; P = 0.6459) or PMS (IVW: OR: 0.7749; 95%CI: 0.4137-1.4513; P = 0.4256). Reverse MR analysis indicated that female reproductive endocrine diseases have no causal effect on LTL. MVMR analysis suggested that the causal effect of LTL on menorrhagia and ovarian endometrioma remained significant after accounting for smoking, alcohol consumption, insomnia, BMI and a history of PID. Pleiotropic and sensitivity analyses also showed robustness of our results. CONCLUSION The results of our bidirectional two-sample MR analysis revealed that genetically predicted longer LTL significantly increased the risk of menorrhagia and ovarian endometrioma, which is consistent with the findings from MVMR studies. However, we did not notice any significant effects of LTL on oligomenorrhea, adenomyosis, infertility, PCOS, POI or PMS. Additionally, reproductive endocrine disorders were found to have no impact on LTL. To enhance our understanding of the effect and underlying mechanism of LTL on female reproductive endocrine diseases, further large-scale studies are warranted in the future.
Collapse
Affiliation(s)
- QiaoRui Yang
- Department of Gynecology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - JinFu Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Gynecology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - ZhenLiang Fan
- Nephrology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang, China.
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
11
|
Ahmed M, Riaz U, Lv H, Yang L. A Molecular Perspective and Role of NAD + in Ovarian Aging. Int J Mol Sci 2024; 25:4680. [PMID: 38731898 PMCID: PMC11083308 DOI: 10.3390/ijms25094680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The decline in female fecundity is linked to advancing chronological age. The ovarian reserve diminishes in quantity and quality as women age, impacting reproductive efficiency and the aging process in the rest of the body. NAD+ is an essential coenzyme in cellular energy production, metabolism, cell signaling, and survival. It is involved in aging and is linked to various age-related conditions. Hallmarks associated with aging, diseases, and metabolic dysfunctions can significantly affect fertility by disturbing the delicate relationship between energy metabolism and female reproduction. Enzymes such as sirtuins, PARPs, and CD38 play essential roles in NAD+ biology, which actively consume NAD+ in their enzymatic activities. In recent years, NAD+ has gained much attention for its role in aging and age-related diseases like cancer, Alzheimer's, cardiovascular diseases, and neurodegenerative disorders, highlighting its involvement in various pathophysiological processes. However, its impact on female reproduction is not well understood. This review aims to bridge this knowledge gap by comprehensively exploring the complex interplay between NAD+ biology and female reproductive aging and providing valuable information that could help develop plans to improve women's reproductive health and prevent fertility issues.
Collapse
Affiliation(s)
- Mehboob Ahmed
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Umair Riaz
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haimiao Lv
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Tire B, Talibova G, Ozturk S. The crosstalk between telomeres and DNA repair mechanisms: an overview to mammalian somatic cells, germ cells, and preimplantation embryos. J Assist Reprod Genet 2024; 41:277-291. [PMID: 38165506 PMCID: PMC10894803 DOI: 10.1007/s10815-023-03008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Telomeres are located at the ends of linear chromosomes and play a critical role in maintaining genomic stability by preventing premature activation of DNA repair mechanisms. Because of exposure to various genotoxic agents, telomeres can undergo shortening and genetic changes. In mammalian cells, the basic DNA repair mechanisms, including base excision repair, nucleotide excision repair, double-strand break repair, and mismatch repair, function in repairing potential damages in telomeres. If these damages are not repaired correctly in time, the unfavorable results such as apoptosis, cell cycle arrest, and cancerous transition may occur. During lifespan, mammalian somatic cells, male and female germ cells, and preimplantation embryos experience a number of telomeric damages. Herein, we comprehensively reviewed the crosstalk between telomeres and the DNA repair mechanisms in the somatic cells, germ cells, and embryos. Infertility development resulting from possible defects in this crosstalk is also discussed in the light of existing studies.
Collapse
Affiliation(s)
- Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
13
|
Ferreira AF, Soares M, Almeida-Santos T, Ramalho-Santos J, Sousa AP. Aging and oocyte competence: A molecular cell perspective. WIREs Mech Dis 2023; 15:e1613. [PMID: 37248206 DOI: 10.1002/wsbm.1613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/30/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
Follicular microenvironment is paramount in the acquisition of oocyte competence, which is dependent on two interconnected and interdependent processes: nuclear and cytoplasmic maturation. Extensive research conducted in human and model systems has provided evidence that those processes are disturbed with female aging. In fact, advanced maternal age (AMA) is associated with a lower chance of pregnancy and live birth, explained by the age-related decline in oocyte quality/competence. This decline has largely been attributed to mitochondria, essential for oocyte maturation, fertilization, and embryo development; with mitochondrial dysfunction leading to oxidative stress, responsible for nuclear and mitochondrial damage, suboptimal intracellular energy levels, calcium disturbance, and meiotic spindle alterations, that may result in oocyte aneuploidy. Nuclear-related mechanisms that justify increased oocyte aneuploidy include deoxyribonucleic acid (DNA) damage, loss of chromosomal cohesion, spindle assembly checkpoint dysfunction, meiotic recombination errors, and telomere attrition. On the other hand, age-dependent cytoplasmic maturation failure is related to mitochondrial dysfunction, altered mitochondrial biogenesis, altered mitochondrial morphology, distribution, activity, and dynamics, dysmorphic smooth endoplasmic reticulum and calcium disturbance, and alterations in the cytoskeleton. Furthermore, reproductive somatic cells also experience the effects of aging, including mitochondrial dysfunction and DNA damage, compromising the crosstalk between granulosa/cumulus cells and oocytes, also affected by a loss of gap junctions. Old oocytes seem therefore to mature in an altered microenvironment, with changes in metabolites, ribonucleic acid (RNA), proteins, and lipids. Overall, understanding the mechanisms implicated in the loss of oocyte quality will allow the establishment of emerging biomarkers and potential therapeutic anti-aging strategies. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ana Filipa Ferreira
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| | - Maria Soares
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Teresa Almeida-Santos
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Coimbra, Portugal
| | - Ana Paula Sousa
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Sills ES, Wood SH. Multichannel Recovery Potential with Activated Autologous Intraovarian Platelet-Rich Plasma and Its Derivatives. MEDICINES (BASEL, SWITZERLAND) 2023; 10:40. [PMID: 37505061 PMCID: PMC10384573 DOI: 10.3390/medicines10070040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Platelet-rich plasma (PRP) is an 'orthobiologic' with recognized roles in plastic surgery, musculoskeletal disorders, dentistry, dermatology, and more recently, 'ovarian rejuvenation'. Intraovarian PRP involves a complex secretome discharged after platelet activation, comprising multiple cytokine mediators delivered surgically to older or inactive ovarian tissue. Loss of oocyte meiotic fidelity and impaired fertilization accompanying advanced maternal age are already managed by IVF, but only with eggs provided by younger donors. However, if the observed effect of rectifying embryo ploidy error can be proven beyond case reports and small series, activated PRP (or its condensed plasma cytokines) would deliver a welcome therapeutic disruption that is difficult to overstate. Because shortcomings in ovarian function are presently addressed mainly by pharmacological approaches (i.e., via recombinant gonadotropins, GnRH analogs, or luteal support), autologous PRP would represent an unusual departure from these interventions. Given the diversity of platelet cargo proteins, the target response of intraovarian PRP is probably not confined to oocytes or follicles. For example, PRP manipulates signal networks driving improved perfusion, HOX regulation, N-glycan post-translational modification, adjustment of voltage-gated ion channels, telomere stabilization, optimization of SIRT3, and ribosome and mitochondria recovery in older oocytes. While multichannel signals operating on various pathways are not unique to reproductive biology, in intraovarian PRP this feature has received little study and may help explain why its standardization has been difficult. Against this background, our report examines the research themes considered most likely to shape clinical practice.
Collapse
Affiliation(s)
- E Scott Sills
- Regenerative Biology Group, FertiGen CAG, San Clemente, CA 92673, USA
- Department of Obstetrics & Gynecology, Palomar Medical Center, Escondido, CA 92029, USA
| | - Samuel H Wood
- Department of Obstetrics & Gynecology, Palomar Medical Center, Escondido, CA 92029, USA
- Gen 5 Fertility Center, San Diego, CA 92121, USA
| |
Collapse
|
15
|
Monnin N, Fattet AJ, Koscinski I. Endometriosis: Update of Pathophysiology, (Epi) Genetic and Environmental Involvement. Biomedicines 2023; 11:biomedicines11030978. [PMID: 36979957 PMCID: PMC10046867 DOI: 10.3390/biomedicines11030978] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Endometriosis is a chronic disease caused by ectopic endometrial tissue. Endometriotic implants induce inflammation, leading to chronic pain and impaired fertility. Characterized by their dependence on estradiol (via estrogen receptor β (ESRβ)) and their resistance to progesterone, endometriotic implants produce their own source of estradiol through active aromatase. Steroidogenic factor-1 (SF1) is a key transcription factor that promotes aromatase synthesis. The expression of SF1 and ESRβ is enhanced by the demethylation of their promoter in progenitor cells of the female reproductive system. High local concentrations of estrogen are involved in the chronic inflammatory environment favoring the implantation and development of endometriotic implants. Similar local conditions can promote, directly and indirectly, the appearance and development of genital cancer. Recently, certain components of the microbiota have been identified as potentially promoting a high level of estrogen in the blood. Many environmental factors are also suspected of increasing the estrogen concentration, especially prenatal exposure to estrogen-like endocrine disruptors such as DES and bisphenol A. Phthalates are also suspected of promoting endometriosis but throughmeans other than binding to estradiol receptors. The impact of dioxin or tobacco seems to be more controversial.
Collapse
Affiliation(s)
- Nicolas Monnin
- Majorelle Clinic, Atoutbio Laboratory, Laboratory of Biology of Reproduction, 54000 Nancy, France
| | - Anne Julie Fattet
- Majorelle Clinic, Atoutbio Laboratory, Laboratory of Biology of Reproduction, 54000 Nancy, France
| | - Isabelle Koscinski
- Laboratory of Biology of Reproduction, Hospital Saint Joseph, 13008 Marseille, France
- NGERE Inserm 1256, 54505 Vandoeuvre les Nancy, France
| |
Collapse
|
16
|
Fattet AJ, Chaillot M, Koscinski I. Telomere Length, a New Biomarker of Male (in)Fertility? A Systematic Review of the Literature. Genes (Basel) 2023; 14:425. [PMID: 36833352 PMCID: PMC9957201 DOI: 10.3390/genes14020425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Male factors are suspected in around half cases of infertility, of which up to 40% are diagnosed as idiopathic. In the context of a continuously increased resort to ART and increased decline of semen parameters, it is of greatest interest to evaluate an additional potential biomarker of sperm quality. According to PRISMA guidelines, this systematic review of the literature selected studies evaluating telomere length in sperm and/or in leukocytes as a potential male fertility biomarker. Twenty-two publications (3168 participants) were included in this review of experimental evidence. For each study, authors determined if there was a correlation between telomere length and semen parameters or fertility outcomes. Of the 13 studies concerning sperm telomere length (STL) and semen parameters, ten found an association between short STL and altered parameters. Concerning the impact of STL on ART results, the data are conflicting. However, eight of the 13 included studies about fertility found significantly longer sperm telomeres in fertile men than in infertile men. In leukocytes, the seven studies reported conflicting findings. Shorter sperm telomeres appear to be associated with altered semen parameters or male infertility. Telomere length may be considered as a new molecular marker of spermatogenesis and sperm quality, and thus is related to male fertility potential. However, additional studies are needed to define the place of the STL in the assessment of individual fertility.
Collapse
Affiliation(s)
- Anne-Julie Fattet
- Centre d’AMP Majorelle-Atoutbio, 95 Rue Ambroise Paré, 54000 Nancy, France
| | - Maxime Chaillot
- Service de Médecine et Biologie du Développement et de la Reproduction, 38 Boulevard Jean Monnet, 44000 Nantes, France
- Faculté de Médecine, Université de Nantes, 44000 Nantes, France
| | - Isabelle Koscinski
- Inserm U1256, Nutrition Genetics Environmental Risks Exposure (NGERE), Université de Lorraine, 54000 Nancy, France
- Centre d’AMP Hôpital Saint Joseph, 26 Bd de Louvain, 13008 Marseille, France
| |
Collapse
|
17
|
ÇAKIR S. Effects of different doses of royal jelly on oxidative stress and telomerase enzyme in rats with Cadmium toxicity. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1139113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose: Cadmium (Cd) is a toxic metal that seriously threatens human health due to environmental pollution, is widely used in industry and agriculture, and causes oxidative stress and tissue damage. This study aims to examine the effect of royal jelly (RJ) on oxidative status and telomerase enzyme activity in tissue damage induced by Cd.
Materials and Methods: The experimental design was made with 6 rats in each group. A total of 6 groups were created: control group, Cd group, 250 mg/kg RJ group, Cd + 250 mg/kg RJ group, 400 mg/kg RJ group, Cd + 400 mg/kg RJ group. In the study, total oxidant status and total antioxidant status in blood serum were investigated by colorimetric method, and telomerase enzyme activity in ovarian tissue was investigated by ELISA method.
Results: Cd caused an increase in oxidative capacity (23.80 ± 2.4) and a significant decrease was determined after RJ applications compared to the control group. After RJ application, the best total antioxidant response was observed in the 250 mg/kg RJ and Cd + 250 mg/kg RJ groups. Cd significantly reduced telomerase enzyme activity (0.90 ± 0.13). RJ administered for treatment after Cd application increased telomerase levels up to the control level (1.40 ± 0.05). The best treatment response was observed in the Cd + 250 mg/kg RJ group (1.42 ± 0.05).
Conclusion: Cd causes oxidative stress and that RJ may have curative effects by increasing the antioxidant capacity and telomerase enzyme activity RJ is a promising natural product and can contribute to recovery.
Collapse
|
18
|
Yegorov YE. Special Issue: "Telomerase: Role in Health and Aging". Biomedicines 2022; 10:biomedicines10112957. [PMID: 36428525 PMCID: PMC9687230 DOI: 10.3390/biomedicines10112957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
We would like to introduce the new volume: "Telomerase and Telomeres: Its Role in Health and Aging 2 [...].
Collapse
Affiliation(s)
- Yegor E Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|