1
|
Tabassum S, Khan MN, Faiz N, Almas, Yaseen B, Ahmad I. Cold atmospheric plasma-activated medium for potential ovarian cancer therapy. Mol Biol Rep 2024; 51:834. [PMID: 39042272 DOI: 10.1007/s11033-024-09795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Cold atmospheric plasma (CAP) has emerged as an innovative tool with broad medical applications, including ovarian cancer (OC) treatment. By bringing CAP in close proximity to liquids such as water or cell culture media, solutions containing reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated, called plasma-activated media (PAM). In this systematic review, we conduct an in-depth analysis of studies focusing on PAM interactions with biological substrates. We elucidate the diverse mechanisms involved in the activation of different media and the complex network of chemical reactions underlying the generation and consumption of the prominent reactive species. Furthermore, we highlight the promises of PAM in advancing biomedical applications, such as its stability for extended periods under appropriate storage conditions. We also examine the application of PAM as an anti-cancer and anti-metastatic treatment for OC, with a particular emphasis on its ability to induce apoptosis via distinct signaling pathways, inhibit cell growth, suppress cell motility, and enhance the therapeutic effects of chemotherapy. Finally, the future outlook of PAM therapy in biomedical applications is speculated, with emphasis on the safety issues relevant to clinical translation.
Collapse
Affiliation(s)
- Shazia Tabassum
- Department of Obstetrics and Gynaecology, Hayatabad Medical Complex, Peshawar, Pakistan
| | | | | | - Almas
- Abdul Wali Khan University, Mardan, Pakistan
| | - Bushra Yaseen
- Department of Gynaecology, Khyber Teaching Hospital, Peshawar, Pakistan
| | - Iftikhar Ahmad
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
| |
Collapse
|
2
|
Chagas C, Mansano JV, da Silva EB, Petri G, da Costa Aguiar Alves Reis B, Schumacher ML, Haddad PS, Pereira EC, Britos TN, Barreiro EJ, Lima LM, Ferreira FF, Fonseca FLA. In vitro results with minimal blood toxicity of a combretastatin A4 analogue. Invest New Drugs 2024; 42:318-325. [PMID: 38758478 DOI: 10.1007/s10637-024-01440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024]
Abstract
Cancer is a disease caused by uncontrolled cell growth that is responsible for several deaths worldwide. Breast cancer is the most common type of cancer among women and is the leading cause of death. Chemotherapy is the most commonly used treatment for cancer; however, it often causes various side effects in patients. In this study, we evaluate the antineoplastic activity of a parent compound based on a combretastatin A4 analogue. We test the compound at 0.01 mg mL- 1, 0.1 mg mL- 1, 1.0 mg mL- 1, 10.0 mg mL- 1, 100.0 mg mL- 1, and 1,000.0 mg mL- 1. To assess molecular antineoplastic activity, we conduct in vitro tests to determine the viability of Ehrlich cells and the blood mononuclear fraction. We also analyze the cytotoxic behavior of the compound in the blood and blood smear. The results show that the molecule has a promising antineoplastic effect and crucial anticarcinogenic action. The toxicity of blood cells does not show statistically significant changes.
Collapse
Affiliation(s)
- Camila Chagas
- Clinical Analysis Laboratory of the Centro Universitário FMABC, Av. Príncipe de Gales, 821, Bairro Vila Príncipe de Gales, 09060-650, Santo André, SP, Brazil.
| | - Jaqueline Vital Mansano
- Clinical Analysis Laboratory of the Centro Universitário FMABC, Av. Príncipe de Gales, 821, Bairro Vila Príncipe de Gales, 09060-650, Santo André, SP, Brazil
| | - Emerson Barbosa da Silva
- Clinical Analysis Laboratory of the Centro Universitário FMABC, Av. Príncipe de Gales, 821, Bairro Vila Príncipe de Gales, 09060-650, Santo André, SP, Brazil
| | - Giuliana Petri
- Clinical Analysis Laboratory of the Centro Universitário FMABC, Av. Príncipe de Gales, 821, Bairro Vila Príncipe de Gales, 09060-650, Santo André, SP, Brazil
| | - Beatriz da Costa Aguiar Alves Reis
- Clinical Analysis Laboratory of the Centro Universitário FMABC, Av. Príncipe de Gales, 821, Bairro Vila Príncipe de Gales, 09060-650, Santo André, SP, Brazil
| | - Maria Lúcia Schumacher
- Chemistry Department, Federal University of São Paulo, Campus Diadema, Rua São Nicolau, 210, Centro, 09913-030, Diadema, SP, Brazil
| | - Paula Silvia Haddad
- Chemistry Department, Federal University of São Paulo, Campus Diadema, Rua São Nicolau, 210, Centro, 09913-030, Diadema, SP, Brazil
| | - Edimar Cristiano Pereira
- Clinical Analysis Laboratory of the Centro Universitário FMABC, Av. Príncipe de Gales, 821, Bairro Vila Príncipe de Gales, 09060-650, Santo André, SP, Brazil
| | - Tatiane Nassar Britos
- Chemistry Department, Federal University of São Paulo, Campus Diadema, Rua São Nicolau, 210, Centro, 09913-030, Diadema, SP, Brazil
| | - Eliezer J Barreiro
- LASSBio, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Av. Carlos Chagas, 373 - bloco K, 2º andar, sala 35 - Prédio do Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, 21941-902, Rio de Janeiro, RJ, Brazil
- Graduate Program of Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, nº 149, Bloco A- 7º andar, Centro de Tecnologia, Cidade Universitária, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Lídia Moreira Lima
- LASSBio, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Av. Carlos Chagas, 373 - bloco K, 2º andar, sala 35 - Prédio do Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, 21941-902, Rio de Janeiro, RJ, Brazil
- Graduate Program of Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, nº 149, Bloco A- 7º andar, Centro de Tecnologia, Cidade Universitária, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Fabio Furlan Ferreira
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), 09280- 560, Santo André, SP, Brazil.
- Nanomedicine Research Unit (NANOMED), Federal University of ABC (UFABC), 09280-560, Santo André, SP, Brazil.
| | - Fernando Luiz Affonso Fonseca
- Clinical Analysis Laboratory of the Centro Universitário FMABC, Av. Príncipe de Gales, 821, Bairro Vila Príncipe de Gales, 09060-650, Santo André, SP, Brazil
- Chemistry Department, Federal University of São Paulo, Campus Diadema, Rua São Nicolau, 210, Centro, 09913-030, Diadema, SP, Brazil
| |
Collapse
|
3
|
Aldayel TS, Gad El Hak HN, Nafie MS, Saad R, Abdelrazek HMA, Kilany OE. Evaluation of antioxidant, anti-inflammatory, anticancer activities and molecular docking of Moringa oleifera seed oil extract against experimental model of Ehrlich ascites carcinoma in Swiss female albino mice. BMC Complement Med Ther 2023; 23:457. [PMID: 38098043 PMCID: PMC10720142 DOI: 10.1186/s12906-023-04279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
The current research intended to evaluate the antitumor properties of Moringa oleifera oil extract (MOE). Fifty-six female Swiss albino mice were employed in this study. Animals were assigned into four groups: control (C) group, moringa oil extract (MOE) group administered (500 mg/kg b. wt) MOE daily via gavage, Ehrlich ascites carcinoma (EAC) group and EAC group administered daily with (500 mg/kg b.wt) MOE for two weeks (EAC/MOE). The results showed that MOE significantly ameliorated the EAC increase in body weight and reduced the EAC cell viability. In addition, they upgraded the levels of hepatic and renal functions, inflammatory cytokines, oxidative stress markers and EAC-induced hepatic and renal histopathological changes. Treatment of EAC with MOE induced antitumor, anti-inflammatory and antioxidant effects and normalized most of the tested parameters besides the histopathological alterations in both renal and hepatic tissues. HPLC for the MOE identified Cinnamic acid, Ellagic acid, Quercetin, Gallic acid, Vanillin and Hesperidin as major compounds. The molecular docking study highlighted the virtual binding of the identified compounds inside the GSH and SOD proteins, especially for Quercetin which exhibited promising binding affinity with good interactive binding mode with the key amino acids. These results demonstrate that the antitumor constituents of MOE against EAC induced oxidative stress and inflammation by preventing oxidative damage and controlling EAC increase.
Collapse
Affiliation(s)
- Tahany Saleh Aldayel
- Department of Health Sciences, Clinical Nutrition, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Heba N Gad El Hak
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt.
| | - Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Raneem Saad
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Omnia E Kilany
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
4
|
Ghambashidze K, Chikhladze R, Saladze T, Hoopes PJ, Shubitidze F. E. coli Phagelysate: A Primer to Enhance Nanoparticles and Drug Deliveries in Tumor. Cancers (Basel) 2023; 15:cancers15082315. [PMID: 37190243 DOI: 10.3390/cancers15082315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The tumor microenvironment (TME), where cancer cells reside, plays a crucial role in cancer progression and metastasis. It maintains an immunosuppressive state in many tumors and regulates the differentiation of precursor monocytes into M1 (anti-tumor)- and M2 (pro-tumor)-polarized macrophages, and greatly reduces anticancer drug and nanoparticle delivery. As a result, the effectiveness of recently developed chemo- and/or nanotechnology-mediated immune and magnetic nanoparticle hyperthermia (mNPH) therapies is inhibited significantly. One of the ways to overcome this limitation is to use E. coli phagelysate as a primer to modify the tumor microenvironment by switching tumor-associated M2 macrophages to anti-tumor M1 macrophages, and initiate the infiltration of tumor-associated macrophages (TAMs). Recently, bacteriophages and phage-induced lysed bacteria (bacterial phagelysates-BPLs) have been shown to be capable of modifying the tumor-associated environment. Phage/BPL-coated proteins tend to elicit strong anti-tumor responses from the innate immune system, prompting phagocytosis and cytokine release. It has also been reported that the microenvironments of bacteriophage- and BPL-treated tumors facilitate the conversion of M2-polarized TAMS to a more M1-polarized (tumoricidal) environment post-phage treatment. This paper demonstrates the feasibility and enhanced efficacy of combining E. coli phagelysate (EcPHL) and mNPH, a promising technology for treating cancers, in a rodent model. Specifically, we illustrate the EcPHL vaccination effect on the TME and mNP distribution in Ehrlich adenocarcinoma tumors by providing the tumor growth dynamics and histology (H&E and Prussian blue) distribution of mNP in tumor and normal tissue.
Collapse
Affiliation(s)
- Ketevan Ghambashidze
- Department of Pathophysiology, Tbilisi State Medical University, Tbilisi 0177, Georgia
| | - Ramaz Chikhladze
- Department of Anatomic Pathology, Tbilisi State Medical University, Tbilisi 0177, Georgia
| | - Tamar Saladze
- Department of Anatomic Pathology, Tbilisi State Medical University, Tbilisi 0177, Georgia
| | - P Jack Hoopes
- Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, USA
| | - Fridon Shubitidze
- Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
6
|
Irrigation of peritoneal cavity with cold atmospheric plasma treated solution effectively reduces microbial load in rat acute peritonitis model. Sci Rep 2022; 12:3646. [PMID: 35256655 PMCID: PMC8901632 DOI: 10.1038/s41598-022-07598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/21/2022] [Indexed: 11/27/2022] Open
Abstract
Accurate and timely diagnosis of appendicitis in children can be challenging, which leads to delayed admittance or misdiagnosis that may cause perforation. Surgical management involves the elimination of the focus (appendectomy) and the reduction of the contamination with peritoneal irrigation to prevent sepsis. However, the validity of conventional irrigation methods is being debated, and novel methods are needed. In the present study, the use of cold plasma treated saline solution as an intraperitoneal irrigation solution for the management of acute peritonitis was investigated. Chemical and in vitro microbiological assessments of the plasma-treated solution were performed to determine the appropriate plasma treatment time to be used in in-vivo experiments. To induce acute peritonitis in rats, the cecal ligation and perforation (CLP) model was used. Sixty rats were divided into six groups, namely, sham operation, plasma irrigation, CLP, dry cleaning after CLP, saline irrigation after CLP, and plasma-treated saline irrigation after CLP group. The total antioxidant and oxidant status, oxidative stress index, microbiological, and pathological evaluations were performed. Findings indicated that plasma-treated saline contains reactive species, and irrigation with plasma-treated saline can effectively inactivate intraperitoneal contamination and prevent sepsis with no short-term local and/or systemic toxicity.
Collapse
|