1
|
Wang J, Wu C, Ye Z, Yin X, Li W, Zhang G, Jiang Z, Liang X, Wei Y, Ge L, Xu X, Wang T, Yang J. Cortisol suppresses lipopolysaccharide-induced in vitro inflammatory response of large yellow croaker (Larimichthys crocea) via the glucocorticoid receptor and p38 mitogen-activated protein kinase pathways. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111046. [PMID: 39542081 DOI: 10.1016/j.cbpb.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/09/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Glucocorticoids (GCs) are well-established anti-inflammatory agents, with cortisol, an endogenous GC, exerting pivotal regulatory effects on normal physiological processes. However, the immune regulatory role of cortisol in teleost fish, particularly in inflammation induced by pathogenic infection, remains largely unexplored. Here, we revealed that lipopolysaccharide (LPS) triggers a pro-inflammatory response in the large yellow croaker (Larimichthys crocea), as evidenced by increased expression of key pro-inflammatory cytokines and activation of the mitogen-activated protein kinase (MAPK) signaling pathway. We further explored the immunosuppressive capacity of cortisol in LPS-stimulated large yellow croaker kidney cells (PCK cells) and in vitro tissues of the large yellow croaker. Our findings indicated that cortisol effectively suppresses LPS-induced overexpression of pro-inflammatory cytokines and p38 MAPK pathway activation. Moreover, the immunosuppressive effects of cortisol were reversed by pretreatment with mifepristone, a glucocorticoid receptor (GR) antagonist. Collectively, this study delineated the inhibitory role of cortisol in the LPS-induced inflammatory cascade in large yellow croaker and underscores the significance of GR in mediating this response. These insights advance our comprehension of GCs-mediated immune modulation and provide a theoretical basis for the application of cortisol in disease prevention and the selective breeding of disease-resistant traits in aquaculture.
Collapse
Affiliation(s)
- Jixiu Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Chenqian Wu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Zhiqing Ye
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Xiaolong Yin
- Zhoushan Fisheries Research Institute of Zhejiang Province, Zhoushan, Zhejiang 316022, PR China
| | - Weiye Li
- Zhoushan Fisheries Research Institute of Zhejiang Province, Zhoushan, Zhejiang 316022, PR China
| | - Guangbo Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Zhijing Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Xudong Liang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Ying Wei
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Lifei Ge
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Xiuwen Xu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Tianming Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China.
| | - Jingwen Yang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China.
| |
Collapse
|
2
|
Fernandes Gregnani M, Budu A, Batista RO, Ornellas FH, Estrela GR, Arruda AC, Freitas Lima LC, Kremer JL, Favaroni Mendes LA, Casarini DE, Lotfi CFP, Oyama LM, Bader M, Araújo RC. Kinin B1 receptor modulates glucose homeostasis and physical exercise capacity by altering adrenal catecholamine synthesis and secretion. Mol Cell Endocrinol 2024; 579:112085. [PMID: 37827227 DOI: 10.1016/j.mce.2023.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Our group has shown in several papers that kinin B1 receptor (B1R) is involved in metabolic adaptations, mediating glucose homeostasis and interfering in leptin and insulin signaling. Since catecholamines are involved with metabolism management, we sought to evaluate B1R role in catecholamine synthesis/secretion. Using B1R global knockout mice, we observed increased basal epinephrine content, accompanied by decreased hepatic glycogen content and increased glucosuria. When these mice were challenged with maximal intensity exercise, they showed decreased epinephrine and norepinephrine response, accompanied by disturbed glycemic responses to effort and poor performance. This phenotype was related to alterations in adrenal catecholamine synthesis: increased basal epinephrine concentration and reduced norepinephrine content in response to exercise, as well decreased gene expression and protein content of tyrosine hydroxylase and decreased gene expression of dopamine beta hydroxylase and kinin B2 receptor. We conclude that the global absence of B1R impairs catecholamine synthesis, interfering with glucose metabolism at rest and during maximal exercise.
Collapse
Affiliation(s)
- Marcos Fernandes Gregnani
- Department of Byophisics, Federal University of São Paulo, Brazil; Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| | - Alexandre Budu
- Department of Byophisics, Federal University of São Paulo, Brazil
| | | | | | - Gabriel Rufino Estrela
- Department of Medicine, Discipline of Nephrology, Federal University of Sao Paulo, São Paulo, Brazil; Department of Clinical and Experimental Oncology, Discipline of Hematology and Hematotherapy, Federal University of São Paulo, 04037002, São Paulo, Brazil
| | | | | | - Jean Lucas Kremer
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Dulce Elena Casarini
- Department of Medicine, Discipline of Nephrology, Federal University of Sao Paulo, São Paulo, Brazil
| | | | | | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10117, Berlin, Germany; Max Delbrück Center of Molecular Medicine, Charité University Medicine, Charitéplatz 1, 10117, Berlin, Germany; Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | | |
Collapse
|
3
|
Alves-Silva T, Húngaro TG, Freitas-Lima LC, de Melo Arthur G, Arruda AC, Santos RB, Oyama LM, Mori MA, Bader M, Araujo RC. Kinin B1 receptor controls maternal adiponectin levels and influences offspring weight gain. iScience 2023; 26:108409. [PMID: 38058311 PMCID: PMC10696114 DOI: 10.1016/j.isci.2023.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/16/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
Given the importance of the kinin B1 receptor in insulin and leptin hormonal regulation, which in turn is crucial in maternal adaptations to ensure nutrient supply to the fetus, we investigated the role of this receptor in maternal metabolism and fetoplacental development. Wild-type and kinin B1 receptor-deficient (B1KO) female mice were mated with male mice of the opposite genotype. Consequently, the entire litter was heterozygous for kinin B1 receptor, ensuring that there would be no influence of offspring genotype on the maternal phenotype. Maternal kinin B1 receptor blockade reduces adiponectin secretion by adipose tissue ex vivo, consistent with lower adiponectin levels in pregnant B1KO mice. Furthermore, fasting insulinemia also increased, which was associated with placental insulin resistance, reduced placental glycogen accumulation, and heavier offspring. Therefore, we propose the combination of chronic hyperinsulinemia and reduced adiponectin secretion in B1KO female mice create a maternal obesogenic environment that results in heavier pups.
Collapse
Affiliation(s)
- Thaís Alves-Silva
- Laboratory of Genetics and Exercise Metabolism, Molecular Biology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
- Max-Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, 13125 Berlin, Germany
| | - Talita G.R. Húngaro
- Laboratory of Genetics and Exercise Metabolism, Nephrology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Leandro C. Freitas-Lima
- Laboratory of Genetics and Exercise Metabolism, Molecular Biology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Gabriel de Melo Arthur
- Laboratory of Genetics and Exercise Metabolism, Molecular Biology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Adriano C. Arruda
- Laboratory of Genetics and Exercise Metabolism, Nephrology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Raisa B. Santos
- Laboratory of Genetics and Exercise Metabolism, Nephrology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Lila M. Oyama
- Laboratory of Nutrition and Endocrine Physiology, Physiology Department, Federal University of São Paulo (UNIFESP), São Paulo 04023-901, Brazil
| | - Marcelo A.S. Mori
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-862, Brazil
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité University Medicine Berlin, Berlin, Germany
| | - Ronaldo C. Araujo
- Laboratory of Genetics and Exercise Metabolism, Molecular Biology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
- Laboratory of Genetics and Exercise Metabolism, Nephrology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| |
Collapse
|