1
|
Li QY, Tan XL, Xu HW, Zeng YX, Huang XY. Inhibition of IGF-1Rα affects the differentiation fate of rat optic cup-derived retinal stem cells to retinal ganglion cells in vitro. Int J Ophthalmol 2025; 18:582-589. [PMID: 40256021 PMCID: PMC11947540 DOI: 10.18240/ijo.2025.04.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 12/18/2024] [Indexed: 04/22/2025] Open
Abstract
AIM To explore the impact of insulin-like growth factor-1 receptor α (IGF-1Rα) on the differentiation fate of optic-cup-derived retinal stem cells (OC-RSCs) into retinal ganglion cells (RGCs) in vitro. METHODS OC-RSCs were isolated from optic cups of rats on embryonic day 12.5, and high-purity OC-RSCs were obtained by conditioned culture and passage. Differentiation of OC-RSCs into RGCs under different serum concentrations was examined using flow cytometry, and the serum concentration with high interference with differentiation ratio was selected. Furthermore, the effect of blocking IGF-1Rα on the differentiation of OC-RSCs into RGCs was analyzed through immunocytochemistry and Western blotting. RESULTS Immunohistochemical analysis revealed IGF-1Rα was highly expressed in rat embryos at day 12.5. OC-RSCs were isolated and purified, and high-purity OC-RSCs were obtained. When 2.5% serum was administered, the ratio of differentiated RGCs (Thy-1.1 positive) decreased significantly, and the results of immunoblotting also confirmed the blockade of IGF-1Rα reduced Thy-1.1 protein expression. CONCLUSION IGF-1Rα blocking can reduce the differentiation of OC-RSCs into RGCs.
Collapse
Affiliation(s)
- Qi-You Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xiao-Ling Tan
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hai-Wei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yu-Xiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xiao-Yong Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
2
|
Li Z, Hu Z, Gao Z. Advances in the Study of Age-Related Macular Degeneration Based on Cell or Cell-Biomaterial Scaffolds. Bioengineering (Basel) 2025; 12:278. [PMID: 40150743 PMCID: PMC11939329 DOI: 10.3390/bioengineering12030278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Age-related macular degeneration (AMD), a progressive neurodegenerative disorder affecting the central retina, is pathologically defined by the irreversible degeneration of photoreceptors and retinal pigment epithelium (RPE), coupled with extracellular drusen deposition and choroidal neovascularization (CNV), and AMD constitutes the predominant etiological factor for irreversible vision impairment in adults aged ≥60 years. Cell-based or cell-biomaterial scaffold-based approaches have been popular in recent years as a major research direction for AMD; monotherapy with cell-based approaches typically involves subretinal injection of progenitor-derived or stem cell-derived RPE cells to restore retinal homeostasis. Meanwhile, cell-biomaterial scaffolds delivered to the lesion site by vector transplantation have been widely developed, and the implanted cell-biomaterial scaffolds can promote the reintegration of cells at the lesion site and solve the problems of translocation and discrete cellular structure produced by cell injection. While these therapeutic strategies demonstrate preliminary efficacy, rigorous preclinical validation and clinical trials remain imperative to validate their long-term safety, functional durability, and therapeutic consistency. This review synthesizes current advancements and translational challenges in cell-based and cell-biomaterial scaffold approaches for AMD, aiming to inform future development of targeted interventions for AMD pathogenesis and management.
Collapse
Affiliation(s)
| | | | - Zhixian Gao
- School of Public Health, Binzhou Medical University, Yantai 264003, China; (Z.L.); (Z.H.)
| |
Collapse
|
3
|
Jo S, Kim YJ, Hwang T, Jang SY, Park SJ, Ye S, Jung Y, Yoo J. Injectable ultrathin porous membranes harnessing shape memory polymers for retinal tissue engineering. J Mater Chem B 2025; 13:3161-3172. [PMID: 39905826 DOI: 10.1039/d4tb02287d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss, characterized by the progressive degeneration of retinal cells, particularly retinal pigment epithelial (RPE) cells. Conventional treatments primarily focus on slowing disease progression without providing a cure. Recent advances in tissue engineering and cell-based therapies offer promising avenues for regenerating retinal tissue and restoring vision. In this study, we developed ultrathin, nanoporous membrane scaffolds designed to mimic Bruch's membrane (BrM) for RPE cell transplantation using vapor-induced phase separation. These scaffolds, fabricated from a blend of poly(L-lactide-co-ε-caprolactone) (PLCL) and poly(lactic-co-glycolic acid) (PLGA), exhibited favorable topography, biocompatibility, and shape-memory properties. In vitro experiments confirmed that the nanoporous topography effectively supports the formation of RPE monolayers with intact tight junctions. Additionally, the shape-memory characteristic enables the membrane to self-expand at body temperature (37 °C), facilitating minimally invasive delivery via injection. ARPE-19 cell-attached nanothin membranes successfully demonstrated shape-recovery properties and were deliverable through a catheter in an ex vivo model. Our findings suggest that the developed scaffolds provide a promising approach for retinal tissue engineering and could significantly contribute to advanced treatments for AMD and other retinal degenerative diseases.
Collapse
Affiliation(s)
- SeongHoon Jo
- Biomaterials Research Center, Biomedical Research Division, Korea Instituten of Sicence and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Yu-Jin Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Instituten of Sicence and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Taek Hwang
- Biomaterials Research Center, Biomedical Research Division, Korea Instituten of Sicence and Technology (KIST), Seoul 02792, Republic of Korea.
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Se Youn Jang
- Biomaterials Research Center, Biomedical Research Division, Korea Instituten of Sicence and Technology (KIST), Seoul 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - So-Jin Park
- Biomaterials Research Center, Biomedical Research Division, Korea Instituten of Sicence and Technology (KIST), Seoul 02792, Republic of Korea.
- School of Chemical Engineering & Materials Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seongryeol Ye
- Biomaterials Research Center, Biomedical Research Division, Korea Instituten of Sicence and Technology (KIST), Seoul 02792, Republic of Korea.
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Biomedical Research Division, Korea Instituten of Sicence and Technology (KIST), Seoul 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Jin Yoo
- Biomaterials Research Center, Biomedical Research Division, Korea Instituten of Sicence and Technology (KIST), Seoul 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
4
|
Zhou W, Chai Y, Lu S, Yang Q, Tang L, Zhou D. Advances in the study of tissue-engineered retinal pigment epithelial cell sheets. Regen Ther 2024; 27:419-433. [PMID: 38694444 PMCID: PMC11062139 DOI: 10.1016/j.reth.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/04/2024] Open
Abstract
Regarded as the most promising treatment modality for retinal degenerative diseases, retinal pigment epithelium cell replacement therapy holds significant potential. Common retinal degenerative diseases, including Age-related Macular Degeneration, are frequently characterized by damage to the unit comprising photoreceptors, retinal pigment epithelium, and Bruch's membrane. The selection of appropriate tissue engineering materials, in conjunction with retinal pigment epithelial cells, for graft preparation, can offer an effective treatment for retinal degenerative diseases. This article presents an overview of the research conducted on retinal pigment epithelial cell tissue engineering, outlining the challenges and future prospects.
Collapse
Affiliation(s)
- Wang Zhou
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Yujiao Chai
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Shan Lu
- National Engineering Research Center of Human Stem Cells, Changsha, China
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, China
| | - Qiaohui Yang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Liying Tang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Di Zhou
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- National Center for Drug Evaluation, National Medical Products Administration, Beijing, China
| |
Collapse
|
5
|
Kaur G, Bisen S, Singh NK. Nanotechnology in retinal diseases: From disease diagnosis to therapeutic applications. BIOPHYSICS REVIEWS 2024; 5:041305. [PMID: 39512331 PMCID: PMC11540445 DOI: 10.1063/5.0214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Nanotechnology has demonstrated tremendous promise in the realm of ocular illnesses, with applications for disease detection and therapeutic interventions. The nanoscale features of nanoparticles enable their precise interactions with retinal tissues, allowing for more efficient and effective treatments. Because biological organs are compatible with diverse nanomaterials, such as nanoparticles, nanowires, nanoscaffolds, and hybrid nanostructures, their usage in biomedical applications, particularly in retinal illnesses, has increased. The use of nanotechnology in medicine is advancing rapidly, and recent advances in nanomedicine-based diagnosis and therapy techniques may provide considerable benefits in addressing the primary causes of blindness related to retinal illnesses. The current state, prospects, and challenges of nanotechnology in monitoring nanostructures or cells in the eye and their application to regenerative ophthalmology have been discussed and thoroughly reviewed. In this review, we build on our previously published review article in 2021, where we discussed the impact of nano-biomaterials in retinal regeneration. However, in this review, we extended our focus to incorporate and discuss the application of nano-biomaterials on all retinal diseases, with a highlight on nanomedicine-based diagnostic and therapeutic research studies.
Collapse
|
6
|
Tian Z, Liu Q, Lin HY, Zhu YR, Ling L, Sung TC, Wang T, Li W, Gao M, Cheng S, Renuka RR, Subbiah SK, Fan G, Wu GJ, Higuchi A. Effects of ECM protein-coated surfaces on the generation of retinal pigment epithelium cells differentiated from human pluripotent stem cells. Regen Biomater 2024; 11:rbae091. [PMID: 39233867 PMCID: PMC11374035 DOI: 10.1093/rb/rbae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Retinal degeneration diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), initially manifest as dysfunction or death of the retinal pigment epithelium (RPE). Subretinal transplantation of human pluripotent stem cell (hPSC)-derived RPE cells has emerged as a potential therapy for retinal degeneration. However, RPE cells differentiated from hPSCs using current protocols are xeno-containing and are rarely applied in clinical trials. The development of hPSC-derived RPE cell differentiation protocols using xeno-free biomaterials is urgently needed for clinical applications. In this study, two protocols (the activin A and NIC84 protocols) were selected for modification and use in the differentiation of hiPSCs into RPE cells; the chetomin concentration was gradually increased to achieve high differentiation efficiency of RPE cells. The xeno-free extracellular matrix (ECM) proteins, laminin-511, laminin-521 and recombinant vitronectin, were selected as plate-coating substrates, and a Matrigel (xeno-containing ECM)-coated surface was used as a positive control. Healthy, mature hPSC-derived RPE cells were transplanted into 21-day-old Royal College of Surgeons (RCS) rats, a model of retinal degeneration disease. The visual function of RCS rats was evaluated by optomotor response (qOMR) and electroretinography after transplantation of hPSC-derived RPE cells. Our study demonstrated that hPSCs can be efficiently differentiated into RPE cells on LN521-coated dishes using the NIC84 protocol, and that subretinal transplantation of the cell suspensions can delay the progression of vision loss in RCS rats.
Collapse
Affiliation(s)
- Zeyu Tian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hui-Yu Lin
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, China
| | - Yu-Ru Zhu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, China
| | - Ling Ling
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Wanqi Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Min Gao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Sitian Cheng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Remya Rajan Renuka
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Suresh Kumar Subbiah
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan, China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, China
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, China
| |
Collapse
|
7
|
Abreu P, Garay BI, Nemkov T, Yamashita AMS, Perlingeiro RCR. Metabolic Changes during In Vivo Maturation of PSC-Derived Skeletal Myogenic Progenitors. Cells 2023; 13:76. [PMID: 38201280 PMCID: PMC10778145 DOI: 10.3390/cells13010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In vitro-generated pluripotent stem cell (PSC)-derived Pax3-induced (iPax3) myogenic progenitors display an embryonic transcriptional signature, but upon engraftment, the profile of re-isolated iPax3 donor-derived satellite cells changes toward similarity with postnatal satellite cells, suggesting that engrafted PSC-derived myogenic cells remodel their transcriptional signature upon interaction within the adult muscle environment. Here, we show that engrafted myogenic progenitors also remodel their metabolic state. Assessment of oxygen consumption revealed that exposure to the adult muscle environment promotes overt changes in mitochondrial bioenergetics, as shown by the substantial suppression of energy requirements in re-isolated iPax3 donor-derived satellite cells compared to their in vitro-generated progenitors. Mass spectrometry-based metabolomic profiling further confirmed the relationship of engrafted iPax3 donor-derived cells to adult satellite cells. The fact that in vitro-generated myogenic progenitors remodel their bioenergetic signature upon in vivo exposure to the adult muscle environment may have important implications for therapeutic applications.
Collapse
Affiliation(s)
- Phablo Abreu
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.); (B.I.G.); (A.M.S.Y.)
| | - Bayardo I. Garay
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.); (B.I.G.); (A.M.S.Y.)
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Aline M. S. Yamashita
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.); (B.I.G.); (A.M.S.Y.)
| | - Rita C. R. Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.); (B.I.G.); (A.M.S.Y.)
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Sasseville S, Karami S, Tchatchouang A, Charpentier P, Anney P, Gobert D, Proulx S. Biomaterials used for tissue engineering of barrier-forming cell monolayers in the eye. Front Bioeng Biotechnol 2023; 11:1269385. [PMID: 37840667 PMCID: PMC10569698 DOI: 10.3389/fbioe.2023.1269385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell monolayers that form a barrier between two structures play an important role for the maintenance of tissue functionality. In the anterior portion of the eye, the corneal endothelium forms a barrier that controls fluid exchange between the aqueous humor of the anterior chamber and the corneal stroma. This monolayer is central in the pathogenesis of Fuchs endothelial corneal dystrophy (FECD). FECD is a common corneal disease, in which corneal endothelial cells deposit extracellular matrix that increases the thickness of its basal membrane (Descemet's membrane), and forms excrescences (guttae). With time, there is a decrease in endothelial cell density that generates vision loss. Transplantation of a monolayer of healthy corneal endothelial cells on a Descemet membrane substitute could become an interesting alternative for the treatment of this pathology. In the back of the eye, the retinal pigment epithelium (RPE) forms the blood-retinal barrier, controlling fluid exchange between the choriocapillaris and the photoreceptors of the outer retina. In the retinal disease dry age-related macular degeneration (dry AMD), deposits (drusen) form between the RPE and its basal membrane (Bruch's membrane). These deposits hinder fluid exchange, resulting in progressive RPE cell death, which in turn generates photoreceptor cell death, and vision loss. Transplantation of a RPE monolayer on a Bruch's membrane/choroidal stromal substitute to replace the RPE before photoreceptor cell death could become a treatment alternative for this eye disease. This review will present the different biomaterials that are proposed for the engineering of a monolayer of corneal endothelium for the treatment of FECD, and a RPE monolayer for the treatment of dry AMD.
Collapse
Affiliation(s)
- Samantha Sasseville
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Samira Karami
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Ange Tchatchouang
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Pascale Charpentier
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Princia Anney
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Delphine Gobert
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
- Centre universitaire d’ophtalmologie (CUO), Hôpital du Saint-Sacrement, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Stéphanie Proulx
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
9
|
Chen S, Liu G, Liu X, Wang Y, He F, Nie D, Liu X, Liu X. RNA-seq analysis reveals differentially expressed inflammatory chemokines in a rat retinal degeneration model induced by sodium iodate. J Int Med Res 2022; 50:3000605221119376. [PMID: 36036255 PMCID: PMC9434683 DOI: 10.1177/03000605221119376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Retinal degeneration (RD) is a group of serious blinding eye diseases characterized by photoreceptor cell apoptosis and progressive degeneration of retinal neurons. However, the underlying mechanism of its pathogenesis remains unclear. METHODS In this study, retinal tissues from sodium iodate (NaIO3)-induced RD and control rats were collected for transcriptome analysis using RNA-sequencing (RNA-seq). Analysis of white blood cell-related parameters was conducted in patients with retinitis pigmentosa (RP) and age-related cataract (ARC) patients. RESULTS In total, 334 mRNAs, 77 long non-coding RNAs (lncRNAs), and 20 other RNA types were identified as differentially expressed in the retinas of NaIO3-induced RD rats. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that differentially expressed mRNAs were mainly enriched in signaling pathways related to immune inflammation. Moreover, we found that the neutrophil-to-lymphocyte ratio was significantly higher in RP patients than in ARC patients. CONCLUSION Overall, this study suggests that multiple chemokines participating in systemic inflammation may contribute to RD pathogenesis.
Collapse
Affiliation(s)
- Sheng Chen
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology,
Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, Guangdong,
China
| | - Guo Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene
Study, Sichuan Provincial People’s Hospital, School of Medicine, University of
Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xin Liu
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology,
Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, Guangdong,
China
| | - Yun Wang
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology,
Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, Guangdong,
China
| | - Fen He
- Shenzhen Aier Eye Hospital Affiliated to Jinan University,
Shenzhen, Guangdong, China
| | - Danyao Nie
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology,
Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, Guangdong,
China
| | - Xinhua Liu
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology,
Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, Guangdong,
China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen, Fujian,
China
- Department of Ophthalmology, Shenzhen People’s Hospital, the 2nd
Clinical Medical College, Jinan University, Shenzhen, China
| |
Collapse
|
10
|
Mut SR, Mishra S, Vazquez M. A Microfluidic Eye Facsimile System to Examine the Migration of Stem-like Cells. MICROMACHINES 2022; 13:mi13030406. [PMID: 35334698 PMCID: PMC8954941 DOI: 10.3390/mi13030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023]
Abstract
Millions of adults are affected by progressive vision loss worldwide. The rising incidence of retinal diseases can be attributed to damage or degeneration of neurons that convert light into electrical signals for vision. Contemporary cell replacement therapies have transplanted stem and progenitor-like cells (SCs) into adult retinal tissue to replace damaged neurons and restore the visual neural network. However, the inability of SCs to migrate to targeted areas remains a fundamental challenge. Current bioengineering projects aim to integrate microfluidic technologies with organotypic cultures to examine SC behaviors within biomimetic environments. The application of neural phantoms, or eye facsimiles, in such systems will greatly aid the study of SC migratory behaviors in 3D. This project developed a bioengineering system, called the μ-Eye, to stimulate and examine the migration of retinal SCs within eye facsimiles using external chemical and electrical stimuli. Results illustrate that the imposed fields stimulated large, directional SC migration into eye facsimiles, and that electro-chemotactic stimuli produced significantly larger increases in cell migration than the individual stimuli combined. These findings highlight the significance of microfluidic systems in the development of approaches that apply external fields for neural repair and promote migration-targeted strategies for retinal cell replacement therapy.
Collapse
Affiliation(s)
- Stephen Ryan Mut
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ 08854, USA;
| | - Shawn Mishra
- Regeneron, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA;
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ 08854, USA;
- Correspondence:
| |
Collapse
|