1
|
Nakayama A, Kurajoh M, Toyoda Y, Takada T, Ichida K, Matsuo H. Dysuricemia. Biomedicines 2023; 11:3169. [PMID: 38137389 PMCID: PMC10740884 DOI: 10.3390/biomedicines11123169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Gout results from elevated serum urate (SU) levels, or hyperuricemia, and is a globally widespread and increasingly burdensome disease. Recent studies have illuminated the pathophysiology of gout/hyperuricemia and its epidemiology, diagnosis, treatment, and complications. The genetic involvement of urate transporters and enzymes is also proven. URAT1, a molecular therapeutic target for gout/hyperuricemia, was initially derived from research into hereditary renal hypouricemia (RHUC). RHUC is often accompanied by complications such as exercise-induced acute kidney injury, which indicates the key physiological role of uric acid. Several studies have also revealed its physiological role as both an anti-oxidant and a pro-oxidant, acting as both a scavenger and a generator of reactive oxygen species (ROSs). These discoveries have prompted research interest in SU and xanthine oxidoreductase (XOR), an enzyme that produces both urate and ROSs, as status or progression biomarkers of chronic kidney disease and cardiovascular disease. The notion of "the lower, the better" is therefore incorrect; a better understanding of uric acid handling and metabolism/transport comes from an awareness that excessively high and low levels both cause problems. We summarize here the current body of evidence, demonstrate that uric acid is much more than a metabolic waste product, and finally propose the novel disease concept of "dysuricemia" on the path toward "normouricemia", or optimal SU level, to take advantage of the dual roles of uric acid. Our proposal should help to interpret the spectrum from hypouricemia to hyperuricemia/gout as a single disease category.
Collapse
Affiliation(s)
- Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa 359-8513, Japan
| | - Masafumi Kurajoh
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Yu Toyoda
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa 359-8513, Japan
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Science, Hachioji 192-0392, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa 359-8513, Japan
| |
Collapse
|
2
|
Mazzierli T, Cirillo L, Palazzo V, Ravaglia F, Becherucci F. Clinical features suggesting renal hypouricemia as the cause of acute kidney injury: a case report and review of the literature. J Nephrol 2023; 36:651-657. [PMID: 36418779 PMCID: PMC10089983 DOI: 10.1007/s40620-022-01494-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022]
Abstract
Hypouricemia is defined as a level of serum uric acid below 2 mg/dl. Renal hypouricemia is related to genetic defects of the uric acid tubular transporters urate transporter 1 and glucose transporter 9. Patients with renal hypouricemia can be completely asymptomatic or can develop uric acid kidney stones or acute kidney injury, particularly after exercise. Renal hypouricemia is especially challenging to diagnose in patients with acute kidney injury, due to the nonspecific clinical, hematochemical and histological features. No common features are reported in the literature that could help clinicians identify renal hypouricemia-acute kidney injury. Currently available guidelines on diagnosis and management of renal hypouricemia provide limited support in defining clues for the differential diagnosis of renal hypouricemia, which is usually suspected when hypouricemia is found in asymptomatic patients. In this paper we report a case of renal hypouricemia-acute kidney injury developing after exercise. We carried out a review of the literature spanning from the first clinical description of renal hypouricemia in 1974 until 2022. We selected a series of clinical features suggesting a diagnosis of renal hypouricemia-acute kidney injury. This may help clinicians to suspect renal hypouricemia in patients with acute kidney injury and to avoid invasive, costly and inconclusive exams such as renal biopsy. Considering the excellent outcome of the patients reported in the literature, we suggest a "wait-and-see" approach with supportive therapy and confirmation of the disease via genetic testing.
Collapse
Affiliation(s)
- Tommaso Mazzierli
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Luigi Cirillo
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | | | - Francesca Becherucci
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy.
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy.
| |
Collapse
|
3
|
Vitamin C transporter SVCT1 serves a physiological role as a urate importer: functional analyses and in vivo investigations. Pflugers Arch 2023; 475:489-504. [PMID: 36749388 PMCID: PMC10011331 DOI: 10.1007/s00424-023-02792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
Uric acid, the end product of purine metabolism in humans, is crucial because of its anti-oxidant activity and a causal relationship with hyperuricemia and gout. Several physiologically important urate transporters regulate this water-soluble metabolite in the human body; however, the existence of latent transporters has been suggested in the literature. We focused on the Escherichia coli urate transporter YgfU, a nucleobase-ascorbate transporter (NAT) family member, to address this issue. Only SLC23A proteins are members of the NAT family in humans. Based on the amino acid sequence similarity to YgfU, we hypothesized that SLC23A1, also known as sodium-dependent vitamin C transporter 1 (SVCT1), might be a urate transporter. First, we identified human SVCT1 and mouse Svct1 as sodium-dependent low-affinity/high-capacity urate transporters using mammalian cell-based transport assays. Next, using the CRISPR-Cas9 system followed by the crossing of mice, we generated Svct1 knockout mice lacking both urate transporter 1 and uricase. In the hyperuricemic mice model, serum urate levels were lower than controls, suggesting that Svct1 disruption could reduce serum urate. Given that Svct1 physiologically functions as a renal vitamin C re-absorber, it could also be involved in urate re-uptake from urine, though additional studies are required to obtain deeper insights into the underlying mechanisms. Our findings regarding the dual-substrate specificity of SVCT1 expand the understanding of urate handling systems and functional evolutionary changes in NAT family proteins.
Collapse
|
4
|
Toyoda Y, Cho SK, Tasic V, Pavelcová K, Bohatá J, Suzuki H, David VA, Yoon J, Pallaiova A, Šaligová J, Nousome D, Cachau R, Winkler CA, Takada T, Stibůrková B. Identification of a dysfunctional exon-skipping splice variant in GLUT9/ SLC2A9 causal for renal hypouricemia type 2. Front Genet 2023; 13:1048330. [PMID: 36733941 PMCID: PMC9887137 DOI: 10.3389/fgene.2022.1048330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Renal hypouricemia (RHUC) is a pathological condition characterized by extremely low serum urate and overexcretion of urate in the kidney; this inheritable disorder is classified into type 1 and type 2 based on causative genes encoding physiologically-important urate transporters, URAT1 and GLUT9, respectively; however, research on RHUC type 2 is still behind type 1. We herein describe a typical familial case of RHUC type 2 found in a Slovak family with severe hypouricemia and hyperuricosuria. Via clinico-genetic analyses including whole exome sequencing and in vitro functional assays, we identified an intronic GLUT9 variant, c.1419+1G>A, as the causal mutation that could lead the expression of p.Gly431GlufsTer28, a functionally-null variant resulting from exon 11 skipping. The causal relationship was also confirmed in another unrelated Macedonian family with mild hypouricemia. Accordingly, non-coding regions should be also kept in mind during genetic diagnosis for hypouricemia. Our findings provide a better pathogenic understanding of RHUC and pathophysiological importance of GLUT9.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Sung Kweon Cho
- Molecular Genetics Epidemiology Section, Basic Research Laboratory, National Cancer Institute and Frederick National Laboratory for Cancer Research, Frederick, MD, United States,Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea
| | - Velibor Tasic
- Faculty of Medicine, University Ss. Cyril and Methodius, Skopje, North Macedonia
| | | | | | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Victor A. David
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Jaeho Yoon
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | | | - Jana Šaligová
- Metabolic Clinic, Children’s Faculty Hospital, Košice, Slovakia
| | - Darryl Nousome
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Raul Cachau
- Integrated Data Science Section, Research Technologies Branch, National Institute of Allergies and Infectious Diseases, Bethesda, MD, United States
| | - Cheryl A. Winkler
- Molecular Genetics Epidemiology Section, Basic Research Laboratory, National Cancer Institute and Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Blanka Stibůrková
- Institute of Rheumatology, Prague, Czechia,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czechia,Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia,*Correspondence: Blanka Stibůrková,
| |
Collapse
|
5
|
Genetic Basis of the Epidemiological Features and Clinical Significance of Renal Hypouricemia. Biomedicines 2022; 10:biomedicines10071696. [PMID: 35885001 PMCID: PMC9313227 DOI: 10.3390/biomedicines10071696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
A genetic defect in urate transporter 1 (URAT1) is the major cause of renal hypouricemia (RHUC). Although RHUC is detected using a serum uric acid (UA) concentration <2.0 mg/dL, the relationship between the genetic state of URAT1 and serum UA concentration is not clear. Homozygosity and compound heterozygosity with respect to mutant URAT1 alleles are associated with a serum UA concentration of <1.0 mg/dL and are present at a prevalence of ~0.1% in Japan. In heterozygous individuals, the prevalence of a serum UA of 1.1−2.0 mg/dL is much higher in women than in men. The frequency of mutant URAT1 alleles is as high as 3% in the general Japanese population. The expansion of a specific mutant URAT1 allele derived from a single mutant gene that occurred in ancient times is reflected in modern Japan at a high frequency. Similar findings were reported in Roma populations in Europe. These phenomena are thought to reflect the ancient migration history of each ethnic group (founder effects). Exercise-induced acute kidney injury (EI-AKI) is mostly observed in individuals with homozygous/compound heterozygous URAT1 mutation, and laboratory experiments suggested that a high UA load on the renal tubules is a plausible mechanism for EI-AKI.
Collapse
|
6
|
Miyamoto D, Sato N, Nagata K, Sakai Y, Sugihara H, Ohashi Y, Stiburkova B, Sebesta I, Ichida K, Okamoto K. Analysis of Purine Metabolism to Elucidate the Pathogenesis of Acute Kidney Injury in Renal Hypouricemia. Biomedicines 2022; 10:biomedicines10071584. [PMID: 35884889 PMCID: PMC9312704 DOI: 10.3390/biomedicines10071584] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
Renal hypouricemia is a disease caused by the dysfunction of renal urate transporters. This disease is known to cause exercise-induced acute kidney injury, but its mechanism has not yet been established. To analyze the mechanism by which hypouricemia causes renal failure, we conducted a semi-ischemic forearm exercise stress test to mimic exercise conditions in five healthy subjects, six patients with renal hypouricemia, and one patient with xanthinuria and analyzed the changes in purine metabolites. The results showed that the subjects with renal hypouricemia had significantly lower blood hypoxanthine levels and increased urinary hypoxanthine excretion after exercise than healthy subjects. Oxidative stress markers did not differ between healthy subjects and hypouricemic subjects before and after exercise, and no effect of uric acid as a radical scavenger was observed. As hypoxanthine is a precursor for adenosine triphosphate (ATP) production via the salvage pathway, loss of hypoxanthine after exercise in patients with renal hypouricemia may cause ATP loss in the renal tubules and consequent tissue damage.
Collapse
Affiliation(s)
- Daisuke Miyamoto
- Department of Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (D.M.); (Y.S.)
| | - Nana Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (N.S.); (K.N.)
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (N.S.); (K.N.)
| | - Yukinao Sakai
- Department of Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (D.M.); (Y.S.)
| | - Hitoshi Sugihara
- Department of Endocrinology, Diabetes, and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan;
| | - Yuki Ohashi
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (Y.O.); (K.I.)
| | - Blanka Stiburkova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 11000 Prague, Czech Republic;
| | - Ivan Sebesta
- Institute of Rheumatology, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, 11000 Prague, Czech Republic;
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (Y.O.); (K.I.)
- Division of Kidney and Hypertension, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (N.S.); (K.N.)
- Correspondence: ; Tel.: +81-3-5841-5035
| |
Collapse
|
7
|
Toyoda Y, Kawamura Y, Nakayama A, Morimoto K, Shimizu S, Tanahashi Y, Tamura T, Kondo T, Kato Y, Ichida K, Suzuki H, Shinomiya N, Kobayashi Y, Takada T, Matsuo H. OAT10/SLC22A13 Acts as a Renal Urate Re-Absorber: Clinico-Genetic and Functional Analyses With Pharmacological Impacts. Front Pharmacol 2022; 13:842717. [PMID: 35462902 PMCID: PMC9019507 DOI: 10.3389/fphar.2022.842717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/09/2022] [Indexed: 01/23/2023] Open
Abstract
Dysfunctional missense variant of organic anion transporter 10 (OAT10/SLC22A13), rs117371763 (c.1129C>T; p.R377C), is associated with a lower susceptibility to gout. OAT10 is a urate transporter; however, its physiological role in urate handling remains unclear. We hypothesized that OAT10 could be a renal urate re-absorber that will be a new molecular target of urate-lowering therapy like urate transporter 1 (URAT1, a physiologically-important well-known renal urate re-absorber) and aimed to examine the effect of OAT10 dysfunction on renal urate handling. For this purpose, we conducted quantitative trait locus analyses of serum urate and fractional excretion of uric acid (FEUA) using samples obtained from 4,521 Japanese males. Moreover, we performed immunohistochemical and functional analyses to assess the molecular properties of OAT10 as a renal urate transporter and evaluated its potential interaction with urate-lowering drugs. Clinico-genetic analyses revealed that carriers with the dysfunctional OAT10 variant exhibited significantly lower serum urate levels and higher FEUA values than the non-carriers, indicating that dysfunction of OAT10 increases renal urate excretion. Given the results of functional assays and immunohistochemical analysis demonstrating the expression of human OAT10 in the apical side of renal proximal tubular cells, our data indicate that OAT10 is involved in the renal urate reabsorption in renal proximal tubules from urine. Additionally, we found that renal OAT10 inhibition might be involved in the urate-lowering effect of losartan and lesinurad which exhibit uricosuric effects; indeed, losartan, an approved drug, inhibits OAT10 more strongly than URAT1. Accordingly, OAT10 can be a novel potential molecular target for urate-lowering therapy.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Keito Morimoto
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Yuki Tanahashi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Takaaki Kondo
- Program in Radiological and Medical Laboratory Sciences, Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yasufumi Kato
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Yasushi Kobayashi
- Department of Anatomy and Neurobiology, National Defense Medical College, Saitama, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
- *Correspondence: Tappei Takada, ; Hirotaka Matsuo,
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
- *Correspondence: Tappei Takada, ; Hirotaka Matsuo,
| |
Collapse
|
8
|
Otani N, Ouchi M, Misawa K, Hisatome I, Anzai N. Hypouricemia and Urate Transporters. Biomedicines 2022; 10:biomedicines10030652. [PMID: 35327453 PMCID: PMC8945357 DOI: 10.3390/biomedicines10030652] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023] Open
Abstract
Hypouricemia is recognized as a rare disorder, defined as a serum uric acid level of 2.0 mg/dL or less. Hypouricemia is divided into an overexcretion type and an underproduction type. The former typical disease is xanthinuria, and the latter is renal hypouricemia (RHUC). The frequency of nephrogenic hypouricemia due to a deficiency of URAT1 is high in Japan, accounting for most asymptomatic and persistent cases of hypouricemia. RHUC results in a high risk of exercise-induced acute kidney injury and urolithiasis. It is vital to promote research on RHUC, as this will lead not only to the elucidation of its pathophysiology but also to the development of new treatments for gout and hyperuricemia.
Collapse
Affiliation(s)
- Naoyuki Otani
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan;
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan;
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan;
| | - Ichiro Hisatome
- Yonago Medical Center, National Hospital Organization, Yonago 683-0006, Tottori, Japan;
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, Yonago 680-8550, Tottori, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Chiba, Japan
- Correspondence:
| |
Collapse
|