1
|
Robinson KS, Sennhenn P, Yuan DS, Liu H, Taddei D, Qian Y, Luo W. TMBIM6/BI-1 is an intracellular environmental regulator that induces paraptosis in cancer via ROS and Calcium-activated ERAD II pathways. Oncogene 2025; 44:494-512. [PMID: 39609612 PMCID: PMC11832424 DOI: 10.1038/s41388-024-03222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Transmembrane B cell lymphoma 2-associated X protein inhibitor motif-containing (TMBIM) 6, also known as Bax Inhibitor-1 (BI-1), has been heavily researched for its cytoprotective functions. TMBIM6 functional diversity includes modulating cell survival, stress, metabolism, cytoskeletal dynamics, organelle function, regulating cytosolic acidification, calcium, and reactive oxygen species (ROS). Clinical research shows TMBIM6 plays a key role in many of the world's top diseases/injuries (i.e., Alzheimer's, Parkinson's, diabetes, obesity, brain injury, liver disease, heart disease, aging, etc.), including cancer, where TMBIM6 expression impacts patient survival, chemoresistance, cancer progression, and metastasis. We show TMBIM6 is activated by, and undergoes, different conformational changes that dictate its function following a significant change in the cell's IntraCellular Environment (ICE). TMBIM6 agonism, following ICE change, can help the cell overcome multiple stresses including toxin exposure, viral infection, wound healing, and excitotoxicity. However, in cancer cells TMBIM6 agonism results in rapid paraptotic induction irrespective of the cancer type, sub-type, genotype or phenotype. Furthermore, the level of TMBIM6 expression in cancer did not dictate the level of paraptotic induction; however, it did dictate the rate at which paraptosis occurred. TMBIM6 agonism did not induce paraptosis in cancer via canonical routes involving p38 MAPK, JNK, ERK, UPR, autophagy, proteasomes, or Caspase-9. Instead, TMBIM6 agonism in cancer upregulates cytosolic Ca2+ and ROS, activates lysosome biogenesis, and induces paraptosis via ERAD II mechanisms. In xenograft models, we show TMBIM6 agonism induces rapid cancer cell death with no toxicity, even at high doses of TMBIM6 agonist (>450 mg/kg). In summary, this study shows TMBIM6's functional diversity is only activated by severe ICE change in diseased/injured cells, highlighting its transformative potential as a therapeutic target across various diseases and injuries, including cancer.
Collapse
Affiliation(s)
| | | | | | - Hai Liu
- Viva Biotech, Shanghai, China
| | | | | | - Wei Luo
- MicroQuin, Cambridge, MA, USA
| |
Collapse
|
2
|
Ding Y, Yang H, Gao J, Tang C, Peng YY, Ma XM, Li S, Wang HY, Lu XM, Wang YT. Synaptic-mitochondrial transport: mechanisms in neural adaptation and degeneration. Mol Cell Biochem 2025:10.1007/s11010-025-05209-y. [PMID: 39841406 DOI: 10.1007/s11010-025-05209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/04/2025] [Indexed: 01/23/2025]
Abstract
Synaptic plasticity is the basis for the proper functioning of the central nervous system. Synapses are the contact points between neurons and are crucial for information transmission, the structure and function of synapses change adaptively based on the different activities of neurons, thus affecting processes such as learning, memory, and neural development and repair. Synaptic activity requires a large amount of energy provided by mitochondria. Mitochondrial transport proteins regulate the positioning and movement of mitochondria to maintain normal energy metabolism. Recent studies have shown a close relationship between mitochondrial transport proteins and synaptic plasticity, providing a new direction for the study of adaptive changes in the central nervous system and new targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huan Yang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jie Gao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xin-Mei Ma
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
3
|
Aslan ES, Akcali N, Yavas C, Eslamkhah S, Gur S, Karcioglu Batur L. Enhancing the Chemosensitivity of MKN-45 Gastric Cancer Cells to Docetaxel via B7H6 Suppression: A Novel Therapeutic Strategy. Life (Basel) 2024; 14:1546. [PMID: 39768254 PMCID: PMC11676808 DOI: 10.3390/life14121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE Although chemotherapy is one of the standard treatments for gastric cancer, the disease's resistance mechanisms continue to limit the survival rates. B7H6 (NCR3LG1), an immune checkpoint belonging to the B7 family, is significantly overexpressed in gastric cancer. This work investigated the possibility of using B7H6 suppression to improve the effectiveness of the widely used chemotherapy medication docetaxel. MATERIALS AND METHODS In this study, MKN-45 gastric cancer cells were transfected for 24 h with siRNA targeting B7H6, and then, docetaxel was added at optimal inhibitory doses (IC25 and IC50). To assess the impact of this combination therapy, cellular viability, proliferation, and migration were assessed using MTT assay, colony-forming unit assay, and wound-healing assay, respectively. Additionally, apoptosis and cell cycle status were evaluated by flow cytometry. Moreover, using qRT-PCR, the gene expression of B7H6 and indicators associated with apoptosis was also examined. RESULTS The sensitivity of MKN-45 cells to docetaxel was greatly increased by the siRNA-mediated knockdown of B7H6, resulting in a decrease in the drug's IC50 value. When compared to each therapy alone, the combination of B7H6 siRNA plus docetaxel at IC50 levels exhibited a significant increase in apoptosis rate. The volume of cells arrested at the sub-G1 and G2-M phase was shown to rise when B7H6 siRNA transfection was combined with docetaxel. Furthermore, the combination treatment significantly decreased the ability of cells to migrate and form colonies. CONCLUSIONS B7H6 suppression increases the susceptibility of MKN-45 gastric cancer cells to docetaxel treatment, resulting in decreased cellular proliferation and increased rates of apoptosis. The present work underscores the possibility of enhancing treatment results in gastric cancer by merging conventional chemotherapy with gene-silencing approaches.
Collapse
Affiliation(s)
- Elif Sibel Aslan
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Biruni University, Istanbul 34015, Türkiye; (N.A.); (C.Y.); (S.E.)
- Biruni University Research Center (B@MER), Biruni University, Istanbul 34015, Türkiye
| | - Nermin Akcali
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Biruni University, Istanbul 34015, Türkiye; (N.A.); (C.Y.); (S.E.)
- Biruni University Research Center (B@MER), Biruni University, Istanbul 34015, Türkiye
| | - Cuneyd Yavas
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Biruni University, Istanbul 34015, Türkiye; (N.A.); (C.Y.); (S.E.)
- Biruni University Research Center (B@MER), Biruni University, Istanbul 34015, Türkiye
| | - Sajjad Eslamkhah
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Biruni University, Istanbul 34015, Türkiye; (N.A.); (C.Y.); (S.E.)
- Biruni University Research Center (B@MER), Biruni University, Istanbul 34015, Türkiye
| | - Savas Gur
- Internal Medicine Specialist, Private Clinic, Çanakkale 17100, Türkiye;
| | - Lutfiye Karcioglu Batur
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Biruni University, Istanbul 34015, Türkiye; (N.A.); (C.Y.); (S.E.)
- Biruni University Research Center (B@MER), Biruni University, Istanbul 34015, Türkiye
| |
Collapse
|
4
|
Zhou S, Liu S, Jiang A, Li Z, Duan C, Li B. New insights into the stromal interaction molecule 2 function and its impact on the immunomodulation of tumor microenvironment. Cell Biosci 2024; 14:119. [PMID: 39272139 PMCID: PMC11395313 DOI: 10.1186/s13578-024-01292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Immune cells-enhanced immunotherapy exhibits unprecedented overall survival-prolongation even curable in some cancer patients. Although so, most of the patients show no response. Tumor microenvironment (TME) where immune cells settle down has multi-faceted influences, but usually creates an immunosuppressive niche that facilitating tumor cells escape from immune attack. The metabolites and malnutrition of TME exert enormous effects on the resident immune cells, but the underlying mechanism is largely unknown. The stromal interaction molecules 2 (STIM2) is an endoplasmic reticulum (ER) calcium (Ca2+) sensor to maintain Ca2+ homeostasis. Notably, the cytosol STIM2 C-terminus is long with various domains that are available for the combination or/and molecular modification. This distinct structure endows STIM2 with a high susceptibility to numerous permeable physico-chemical molecules or protein interactions. STIM2 and its variants are extensively expressed in various immune cells, especially in T immune cells. STIM2 was reported closely correlated with the function of immune cells via regulating Ca2+ signaling, energy metabolism and cell fitness. Herein, we sum the latest findings on the STIM2 structure, focusing on its distinct characteristics and profound effect on the regulation of Ca2+ homeostasis and multi-talented functionality. We also outline the advancements on the underlying mechanism how STIM2 anomalies influence the function of immune cells and on the turbulent expression or/and amenably modification of STIM2 within the tumor niches. Then we discuss the translation of these researches into antitumor approaches, emphasizing the potential of STIM2 as a therapeutic target for direct inhibition of tumor cells or more activation towards immune cells driving to flare TME. This review is an update on STIM2, aiming to rationalize the potential of STIM2 as a therapeutic target for immunomodulation, engaging immune cells to exert the utmost anti-tumor effect.
Collapse
Affiliation(s)
- Shishan Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shujie Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Anfeng Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhiyuan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Wang Y, Wu H, Chen Z, Cao J, Zhu X, Zhang X. Nano-hydroxyapatite promotes cell apoptosis by co-activating endoplasmic reticulum stress and mitochondria damage to inhibit glioma growth. Regen Biomater 2024; 11:rbae038. [PMID: 38799701 PMCID: PMC11127112 DOI: 10.1093/rb/rbae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 05/29/2024] Open
Abstract
Despite a growing body of studies demonstrating the specific anti-tumor effect of nano-hydroxyapatite (n-HA), the underlying mechanism remained unclear. Endoplasmic reticulum (ER) and mitochondria are two key players in intracellular Ca2+ homeostasis and both require Ca2+ to participate. Moreover, the ER-mitochondria interplay coordinates the maintenance of cellular Ca2+ homeostasis to prevent any negative consequences from excess of Ca2+, hence there needs in-depth study of n-HA effect on them. In this study, we fabricated needle-like n-HA to investigate the anti-tumor effectiveness as well as the underlying mechanisms from cellular and molecular perspectives. Data from in vitro experiments indicated that the growth and invasion of glioma cells were obviously reduced with the aid of n-HA. It is interesting to note that the expression of ER stress biomarkers (GRP78, p-IRE1, p-PERK, PERK, and ATF6) were all upregulated after n-HA treatment, along with the activation of the pro-apoptotic transcription factor CHOP, showing that ER stress produced by n-HA triggered cell apoptosis. Moreover, the increased expression level of intracellular reactive oxygen species and the mitochondrial membrane depolarization, as well as the downstream cell apoptotic signaling activation, further demonstrated the pro-apoptotic roles of n-HA induced Ca2+ overload through inducing mitochondria damage. The in vivo data provided additional evidence that n-HA caused ER stress and mitochondria damage in cells and effectively restrain the growth of glioma tumors. Collectively, the work showed that n-HA co-activated intracellular ER stress and mitochondria damage are critical triggers for cancer cells apoptosis, offering fresh perspectives on ER-mitochondria targeted anti-tumor therapy.
Collapse
Affiliation(s)
- Yifu Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Medical School, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Institute of tissue engineering and stem cells, Nanchong Central Hospital, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jun Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
6
|
Zhou H, Wu Y, Cai J, Zhang D, Lan D, Dai X, Liu S, Song T, Wang X, Kong Q, He Z, Tan J, Zhang J. Micropeptides: potential treatment strategies for cancer. Cancer Cell Int 2024; 24:134. [PMID: 38622617 PMCID: PMC11020647 DOI: 10.1186/s12935-024-03281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/23/2024] [Indexed: 04/17/2024] Open
Abstract
Some noncoding RNAs (ncRNAs) carry open reading frames (ORFs) that can be translated into micropeptides, although noncoding RNAs (ncRNAs) have been previously assumed to constitute a class of RNA transcripts without coding capacity. Furthermore, recent studies have revealed that ncRNA-derived micropeptides exhibit regulatory functions in the development of many tumours. Although some of these micropeptides inhibit tumour growth, others promote it. Understanding the role of ncRNA-encoded micropeptides in cancer poses new challenges for cancer research, but also offers promising prospects for cancer therapy. In this review, we summarize the types of ncRNAs that can encode micropeptides, highlighting recent technical developments that have made it easier to research micropeptides, such as ribosome analysis, mass spectrometry, bioinformatics methods, and CRISPR/Cas9. Furthermore, based on the distribution of micropeptides in different subcellular locations, we explain the biological functions of micropeptides in different human cancers and discuss their underestimated potential as diagnostic biomarkers and anticancer therapeutic targets in clinical applications, information that may contribute to the discovery and development of new micropeptide-based tools for early diagnosis and anticancer drug development.
Collapse
Affiliation(s)
- He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Yan Wu
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi, 563000, China
| | - Dongfeng Lan
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaofang Dai
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Songpo Liu
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Qinghong Kong
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, 563000, China.
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China.
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
7
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
8
|
Wilkerson AD, Parthasarathy PB, Stabellini N, Mitchell C, Pavicic PG, Fu P, Rupani A, Husic H, Rayman PA, Swaidani S, Abraham J, Budd GT, Moore H, Al-Hilli Z, Ko JS, Baar J, Chan TA, Alban T, Diaz-Montero CM, Montero AJ. Phase II Clinical Trial of Pembrolizumab and Chemotherapy Reveals Distinct Transcriptomic Profiles by Radiologic Response in Metastatic Triple-Negative Breast Cancer. Clin Cancer Res 2024; 30:82-93. [PMID: 37882661 PMCID: PMC10767305 DOI: 10.1158/1078-0432.ccr-23-1349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE A single arm, phase II trial of carboplatin, nab-paclitaxel, and pembrolizumab (CNP) in metastatic triple-negative breast cancer (mTNBC) was designed to evaluate overall response rate (ORR), progression-free survival (PFS), duration of response (DOR), safety/tolerability, overall survival (OS), and identify pathologic and transcriptomic correlates of response to therapy. PATIENTS AND METHODS Patients with ≤2 prior therapies for metastatic disease were treated with CNP regardless of tumor programmed cell death-ligand 1 status. Core tissue biopsies were obtained prior to treatment initiation. ORR was assessed using a binomial distribution. Survival was analyzed via the Kaplan-Meier method. Bulk RNA sequencing was employed for correlative studies. RESULTS Thirty patients were enrolled. The ORR was 48.0%: 2 (7%) complete responses (CR), 11 (41%) partial responses (PR), and 8 (30%) stable disease (SD). The median DOR for patients with CR or PR was 6.4 months [95% confidence interval (CI), 4-8.5 months]. For patients with CR, DOR was >24 months. Overall median PFS and OS were 5.8 (95% CI, 4.7-8.5 months) and 13.4 months (8.9-17.3 months), respectively. We identified unique transcriptomic landscapes associated with each RECIST category of radiographic treatment response. In CR and durable PR, IGHG1 expression was enriched. IGHG1high tumors were associated with improved OS (P = 0.045) and were concurrently enriched with B cells and follicular helper T cells, indicating IGHG1 as a promising marker for lymphocytic infiltration and robust response to chemo-immunotherapy. CONCLUSIONS Pretreatment tissue sampling in mTNBC treated with CNP reveals transcriptomic signatures that may predict radiographic responses to chemo-immunotherapy.
Collapse
Affiliation(s)
- Avia D. Wilkerson
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
- Cleveland Clinic Digestive Disease & Surgery Institute, Department of General Surgery, Cleveland, Ohio
| | | | - Nickolas Stabellini
- Graduate Education Office, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Carley Mitchell
- University Hospitals Cleveland Medical Center, Department of Internal Medicine, Cleveland, Ohio
| | - Paul G. Pavicic
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
| | - Pingfu Fu
- Case Western Reserve University, Department of Population and Quantitative Health Sciences, Cleveland, Ohio
| | - Amit Rupani
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
| | - Hana Husic
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
| | - Patricia A. Rayman
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
| | - Shadi Swaidani
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
| | - Jame Abraham
- Cleveland Clinic Department of Hematology and Medical Oncology, Taussig Cancer Center, Cleveland, Ohio
| | - G. Thomas Budd
- Cleveland Clinic Department of Hematology and Medical Oncology, Taussig Cancer Center, Cleveland, Ohio
| | - Halle Moore
- Cleveland Clinic Department of Hematology and Medical Oncology, Taussig Cancer Center, Cleveland, Ohio
| | - Zahraa Al-Hilli
- Cleveland Clinic Digestive Disease & Surgery Institute, Department of General Surgery, Cleveland, Ohio
| | - Jennifer S. Ko
- Cleveland Clinic Pathology & Laboratory Medicine, Department of Anatomic Pathology, Cleveland, Ohio
| | - Joseph Baar
- University Hospitals/Seidman Cancer Center Case Western Reserve University, Cleveland, Ohio
| | - Timothy A. Chan
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
| | - Tyler Alban
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
| | - C. Marcela Diaz-Montero
- Cleveland Clinic Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, Ohio
| | - Alberto J. Montero
- University Hospitals/Seidman Cancer Center Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
9
|
Luo G, Li X, Lin J, Ge G, Fang J, Song W, Xiao GG, Zhang B, Peng X, Duo Y, Tang BZ. Multifunctional Calcium-Manganese Nanomodulator Provides Antitumor Treatment and Improved Immunotherapy via Reprogramming of the Tumor Microenvironment. ACS NANO 2023; 17:15449-15465. [PMID: 37530575 PMCID: PMC10448754 DOI: 10.1021/acsnano.3c01215] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
Ions play a vital role in regulating various biological processes, including metabolic and immune homeostasis, which involves tumorigenesis and therapy. Thus, the perturbation of ion homeostasis can induce tumor cell death and evoke immune responses, providing specific antitumor effects. However, antitumor strategies that exploit the effects of multiion perturbation are rare. We herein prepared a pH-responsive nanomodulator by coloading curcumin (CU, a Ca2+ enhancer) with CaCO3 and MnO2 into nanoparticles coated with a cancer cell membrane. This nanoplatform was aimed at reprogramming the tumor microenvironment (TME) and providing an antitumor treatment through ion fluctuation. The obtained nanoplatform, called CM NPs, could neutralize protons by decomposing CaCO3 and attenuating cellular acidity, they could generate Ca2+ and release CU, elevating Ca2+ levels and promoting ROS generation in the mitochondria and endoplasmic reticulum, thus, inducing immunogenic cell death. Mn2+ could decompose the endogenous H2O2 into O2 to relieve hypoxia and enhance the sensitivity of cGAS, activating the cGAS-STING signaling pathway. In addition, this strategy allowed the reprogramming of the immune TME, inducing macrophage polarization and dendritic cell maturation via antigen cross-presentation, thereby increasing the immune system's ability to combat the tumor effectively. Moreover, the as-prepared nanoparticles enhanced the antitumor responses of the αPD1 treatment. This study proposes an effective strategy to combat tumors via the reprogramming of the tumor TME and the alteration of essential ions concentrations. Thus, it shows great potential for future clinical applications as a complementary approach along with other multimodal treatment strategies.
Collapse
Affiliation(s)
- Guanghong Luo
- School of
Medicine, The 2nd Affiliated Hospital, The
Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department
of Radiation Oncology, Shenzhen People’s
Hospital (The Second Clinical Medical College, Jinan University; The
First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong China
| | - Xing Li
- School
of
Medicine, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Jihui Lin
- School of
Medicine, The 2nd Affiliated Hospital, The
Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- School
of
Nursing, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Gao Ge
- Department
of Laboratory Medicine, The Third Xiangya
Hospital, Central South University, Changsha, 410013, China
| | - Jiangli Fang
- Department
of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Wangze Song
- State Key
Laboratory of Fine Chemicals, Department of Pharmacology, School of
Chemical Engineering, Dalian University
of Technology, Dalian, 116024, China
| | - Gary Guishan Xiao
- Research
Center for Cancer Metabolism, College of Pharmacology, Shenzhen University of Technology, Chinese Academy
of Sciences, Shenzhen, 518118, China
- State Key
Laboratory of Fine Chemicals, Department of Pharmacology, School of
Chemical Engineering, Dalian University
of Technology, Dalian, 116024, China
| | - Bo Zhang
- School of
Medicine, The 2nd Affiliated Hospital, The
Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department
of Neurosurgery, The Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518001, China
| | - Xiaojun Peng
- State
Key
Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s
Hospital (The Second Clinical Medical College, Jinan University; The
First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong China
- Department
of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, 171 77, Sweden
- Key Lab for
New Drug Research of TCM, Research Institute
of Tsinghua University in Shenzhen, Shenzhen 518057, Guangdong China
| | - Ben Zhong Tang
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen. Shenzhen 518172, Guangdong China
| |
Collapse
|
10
|
Singh J, Meena A, Luqman S. New frontiers in the design and discovery of therapeutics that target calcium ion signaling: a novel approach in the fight against cancer. Expert Opin Drug Discov 2023; 18:1379-1392. [PMID: 37655549 DOI: 10.1080/17460441.2023.2251887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION The Ca2+ signaling toolkit is currently under investigation as a potential target for addressing the threat of cancer. A growing body of evidence suggests that calcium signaling plays a crucial role in promoting various aspects of cancer, including cell proliferation, progression, drug resistance, and migration-related activities. Consequently, focusing on these altered Ca2+ transporting proteins has emerged as a promising area of research for cancer treatment. AREAS COVERED This review highlights the existing research on the role of Ca2+-transporting proteins in cancer progression. It discusses the current studies evaluating Ca2+ channel/transporter/pump blockers, inhibitors, or regulators as potential anticancer drugs. Additionally, the review addresses specific gaps in our understanding of the field that may require further investigation. EXPERT OPINION Targeting specific Ca2+ signaling cascades could disrupt normal cellular activities, making cancer therapy complex and elusive. Therefore, there is a need for improvements in current Ca2+ signaling pathway focused medicines. While synthetic molecules and plant compounds show promise, they also come with certain limitations. Hence, exploring the framework of targeted drug delivery, structure-rationale-based designing, and repurposing potential drugs to target Ca2+ transporting proteins could potentially lead to a significant breakthrough in cancer treatment.
Collapse
Affiliation(s)
- Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
11
|
Moccia F, Montagna D. Transient Receptor Potential Ankyrin 1 (TRPA1) Channel as a Sensor of Oxidative Stress in Cancer Cells. Cells 2023; 12:cells12091261. [PMID: 37174661 PMCID: PMC10177399 DOI: 10.3390/cells12091261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Moderate levels of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), fuel tumor metastasis and invasion in a variety of cancer types. Conversely, excessive ROS levels can impair tumor growth and metastasis by triggering cancer cell death. In order to cope with the oxidative stress imposed by the tumor microenvironment, malignant cells exploit a sophisticated network of antioxidant defense mechanisms. Targeting the antioxidant capacity of cancer cells or enhancing their sensitivity to ROS-dependent cell death represent a promising strategy for alternative anticancer treatments. Transient Receptor Potential Ankyrin 1 (TRPA1) is a redox-sensitive non-selective cation channel that mediates extracellular Ca2+ entry upon an increase in intracellular ROS levels. The ensuing increase in intracellular Ca2+ concentration can in turn engage a non-canonical antioxidant defense program or induce mitochondrial Ca2+ dysfunction and apoptotic cell death depending on the cancer type. Herein, we sought to describe the opposing effects of ROS-dependent TRPA1 activation on cancer cell fate and propose the pharmacological manipulation of TRPA1 as an alternative therapeutic strategy to enhance cancer cell sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Daniela Montagna
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, 27100 Pavia, Italy
- Pediatric Clinic, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
12
|
Dewdney B, Ursich L, Fletcher EV, Johns TG. Anoctamins and Calcium Signalling: An Obstacle to EGFR Targeted Therapy in Glioblastoma? Cancers (Basel) 2022; 14:cancers14235932. [PMID: 36497413 PMCID: PMC9740065 DOI: 10.3390/cancers14235932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma is the most common form of high-grade glioma in adults and has a poor survival rate with very limited treatment options. There have been no significant advancements in glioblastoma treatment in over 30 years. Epidermal growth factor receptor is upregulated in most glioblastoma tumours and, therefore, has been a drug target in recent targeted therapy clinical trials. However, while many inhibitors and antibodies for epidermal growth factor receptor have demonstrated promising anti-tumour effects in preclinical models, they have failed to improve outcomes for glioblastoma patients in clinical trials. This is likely due to the highly plastic nature of glioblastoma tumours, which results in therapeutic resistance. Ion channels are instrumental in the development of many cancers and may regulate cellular plasticity in glioblastoma. This review will explore the potential involvement of a class of calcium-activated chloride channels called anoctamins in brain cancer. We will also discuss the integrated role of calcium channels and anoctamins in regulating calcium-mediated signalling pathways, such as epidermal growth factor signalling, to promote brain cancer cell growth and migration.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6319-1023
| | - Lauren Ursich
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| | - Terrance G. Johns
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
13
|
Sun Z, Li G, Shang D, Zhang J, Ai L, Liu M. Identification of microsatellite instability and immune-related prognostic biomarkers in colon adenocarcinoma. Front Immunol 2022; 13:988303. [PMID: 36275690 PMCID: PMC9585257 DOI: 10.3389/fimmu.2022.988303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundColon adenocarcinoma (COAD) is a prevalent malignancy that causes significant mortality. Microsatellite instability plays a pivotal function in COAD development and immunotherapy resistance. However, the detailed underlying mechanism requires further investigation. Consequently, identifying molecular biomarkers with prognostic significance and revealing the role of MSI in COAD is important for addressing key obstacles in the available treatments.MethodsCIBERSORT and ESTIMATE analyses were performed to evaluate immune infiltration in COAD samples, followed by correlation analysis for MSI and immune infiltration. Then, differentially expressed genes (DEGs) in MSI and microsatellite stability (MSS) samples were identified and subjected to weighted gene co-expression network analysis (WGCNA). A prognostic model was established with univariate cox regression and LASSO analyses, then evaluated with Kaplan-Meier analysis. The correlation between the prognostic model and immune checkpoint inhibitor (ICI) response was also analyzed.ResultsIn total, 701 significant DEGs related to MSI status were identified, and WGCNA revealed two modules associated with the immune score. Then, a seven-gene prognostic model was constructed using LASSO and univariate cox regression analyses to predict survival and ICI response. The high-risk score patients in TCGA and GEO cohorts presented a poor prognosis, as well as a high immune checkpoint expression, so they are more likely to benefit from ICI treatment.ConclusionThe seven-gene prognostic model constructed could predict the survival of COAD and ICI response and serve as a reference for immunotherapy decisions.
Collapse
Affiliation(s)
- Ziquan Sun
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guodong Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Desi Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jinning Zhang
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lianjie Ai
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Liu
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Ming Liu,
| |
Collapse
|
14
|
Liu Y, Zeng S, Wu M. Novel insights into noncanonical open reading frames in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188755. [PMID: 35777601 DOI: 10.1016/j.bbcan.2022.188755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022]
Abstract
With technological advances, previously neglected noncanonical open reading frames (nORFs) are drawing ever-increasing attention. However, the translation potential of numerous putative nORFs remains elusive, and the functions of noncanonical peptides have not been systemically summarized. Moreover, the relationship between noncanonical peptides and their counterpart protein or RNA products remains elusive and the clinical implementation of noncanonical peptides has not been explored. In this review, we highlight how recent technological advances such as ribosome profiling, bioinformatics approaches and CRISPR/Cas9 facilitate the research of noncanonical peptides. We delineate the features of each nORF category and the evolutionary process underneath the nORFs. Most importantly, we summarize the diversified functions of noncanonical peptides in cancer based on their subcellular location, which reflect their extensive participation in key pathways and essential cellular activities in cancer cells. Meanwhile, the equilibrium between noncanonical peptides and their corresponding transcripts or counterpart products may be dysregulated under pathological states, which is essential for their roles in cancer. Lastly, we explore their underestimated potential in clinical application as diagnostic biomarkers and treatment targets against cancer.
Collapse
Affiliation(s)
- Yihan Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Minghua Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
15
|
Lv XL, Wang YY, Zheng MX, Bai R, Zhang L, Duan BT, Lei X, Zhang XS, Zhao YJ, Cui KL, Xu T. The role of Ca2+ in the injury of host cells during the schizogenic stage of E. tenella. Poult Sci 2022; 101:101916. [PMID: 35523032 PMCID: PMC9079706 DOI: 10.1016/j.psj.2022.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Cecal epithelial cell damage is a key factor in host injure during the development of E. tenella. The intracellular free Ca2+ of the host cell is closely related to the invasion, development and proliferation of intracellular parasites, and cell damage. To determine the relationship between Ca2+ and host cell damage in the schizogenic stage of E. tenella, we established a chick embryo cecal epithelial cells model of E. tenella infection. Fluorescence staining, flow cytometry, transmission electron microscopy, inhibition and blocking experiments were used to detect the damage effect and mechanism of host cells during the schizogenic stage of E. tenella. The results showed that the host cells cytoskeletal remodeling, cell and organelle structure was destroyed, and apoptosis and necrosis were increased during the schizont stage of E. tenella. Furthermore, the above-mentioned effects of the schizogenic stage of E. tenella on cells can be alleviated by reducing the intracellular Ca2+ concentration in the host cells. These observations indicate that the effect of host cell injury was closely related to Ca2+ during schizont stage of E. tenella.
Collapse
|