1
|
Huang Z, Wang H, Pang H, Zeng M, Zhang G, Liu F. The Comprehensive Analysis of Weighted Gene Co-Expression Network Analysis and Machine Learning Revealed Diagnostic Biomarkers for Breast Implant Illness Complicated with Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:305-324. [PMID: 40230814 PMCID: PMC11996000 DOI: 10.2147/bctt.s507754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/01/2025] [Indexed: 04/16/2025]
Abstract
Purpose An increasing number of breast cancer (BC) patients choose prosthesis implantation after mastectomy, and the occurrence of breast implant illness (BII) has received increasing attention and the underlying molecular mechanisms have not been clearly elucidated. This study aimed to identify the crosstalk genes between BII and BC and explored their clinical value and molecular mechanism initially. Methods We retrieved the data from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), and identified the differentially expressed genes (DEG) as well as module genes using Limma and weighted gene co-expression network analysis (WGCNA). Enrichment analysis, the protein-protein interaction network (PPI), and machine learning algorithms were performed to explore the hub genes. We employed a nomogram and receiver operating characteristic curve to evaluate the diagnostic accuracy. Single-cell analysis disclosed variations in the expression of key genes across distinct cellular populations. The expression levels of the key genes were further confirmed in BC cell lines. Immunohistochemical analysis was utilized to examine protein levels from 25 patients with breast cancer undergoing prosthetic implant surgery. Ultimately, we deployed single-sample Gene Set Enrichment Analysis (ssGSEA) to scrutinize the immunological profiles between the normal and BC cohorts, as well as between the non-BII and BII groups. Results WGCNA identified 1137 common genes, whereas DEG analysis found 541 overlapping genes in BII and BC. After constructing the PPI network, 17 key genes were selected, and three potential hub genes include KRT14, KIT, ALB were chosen for nomogram creation and diagnostic assessment through machine learning. The validation of these results was conducted by examining gene expression patterns in the validation dataset, breast cancer cell lines, and BII-BC patients. However, ssGSEA uncovered different immune cell infiltration patterns in BII and BC. Conclusion We pinpointed shared three central genes include KRT14, KIT, ALB and molecular pathways common to BII and BC. Shedding light on the complex mechanisms underlying these conditions and suggesting potential targets for diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zhenfeng Huang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, People’s Republic of China
| | - Huibo Wang
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Hui Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, People’s Republic of China
| | - Mengyao Zeng
- Department of Medical Training, Aimiker Technology Development Co., Ltd, Nanjing, Jiangsu Province, People’s Republic of China
| | - Guoqiang Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, People’s Republic of China
| | - Feng Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, People’s Republic of China
| |
Collapse
|
2
|
Hasan FF, Fadhil MH, Almukhtar ZK. Assessment of Tissue Eosinophilic Infiltration in Invasive Mammary Carcinoma. Int J Breast Cancer 2024; 2024:1514147. [PMID: 39296928 PMCID: PMC11410403 DOI: 10.1155/2024/1514147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Background: Stromal inflammatory cells in malignant tissue have recently gained increasing interest. Unlike the extensive research on tumor-infiltrating lymphocytes, published data about tumor-infiltrating eosinophils in breast cancer are scarce. Furthermore, similar studies have yet to be conducted in Iraq. Aims: The objective of this study is to examine the presence of eosinophilic infiltration by direct visualization using light microscopy and to analyze its relationship with other histological parameters in a group of Iraqi women diagnosed with invasive mammary cancer. Methods and material: A retrospective study enrolled 90 histological samples of invasive mammary carcinoma provided by core needle biopsy from a single center, together with their immunohistochemical results for ER and HER2-NEU. Data reviewing, direct morphological visualizations, and counting eosinophilic infiltration in tissue sections were done by two independent pathologists using light microscopy. The results were statistically correlated with the grade, ER, HER2-NEU, calcification, and axillary lymph node status at presentation. Results: Out of the entire sample size (90), 40 (44%) showed the presence of eosinophilic infiltration in the tissue, both intratumoral and stromal. Further analysis revealed that most eosinophilic infiltrates had an intermediate score (4-19) per 10 consecutive high-power fields. A strong and meaningful statistical relationship was seen between tissue eosinophilic infiltration and HER2/NEU status. A statistically insignificant correlation was seen between tissue eosinophilic infiltration and histological grade, ER receptor status, calcification, and axillary lymph node status at presentation. Conclusions: Eosinophils are tumor-infiltrating cells in breast cancer, both intratumoral and stromal. The presence of tissue eosinophilic infiltration can predict HER2/NEU negativity in breast cancer.
Collapse
Affiliation(s)
- Farah Falah Hasan
- Department of Pathology University of Kerbala, Kerbala, Iraq
- Department of Plastic and Reconstructive Surgery Gazi Al Hariri Teaching Hospital, Baghdad, Iraq
- Department of Pathology University of Baghdad, Baghdad, Iraq
| | - Mohammed Haider Fadhil
- Department of Pathology University of Kerbala, Kerbala, Iraq
- Department of Plastic and Reconstructive Surgery Gazi Al Hariri Teaching Hospital, Baghdad, Iraq
- Department of Pathology University of Baghdad, Baghdad, Iraq
| | - Zainab Khalid Almukhtar
- Department of Pathology University of Kerbala, Kerbala, Iraq
- Department of Plastic and Reconstructive Surgery Gazi Al Hariri Teaching Hospital, Baghdad, Iraq
- Department of Pathology University of Baghdad, Baghdad, Iraq
| |
Collapse
|
3
|
Chen X, Sun H, Yang C, Wang W, Lyu W, Zou K, Zhang F, Dai Z, He X, Dong H. Bioinformatic analysis and experimental validation of six cuproptosis-associated genes as a prognostic signature of breast cancer. PeerJ 2024; 12:e17419. [PMID: 38912044 PMCID: PMC11192027 DOI: 10.7717/peerj.17419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/28/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Breast carcinoma (BRCA) is a life-threatening malignancy in women and shows a poor prognosis. Cuproptosis is a novel mode of cell death but its relationship with BRCA is unclear. This study attempted to develop a cuproptosis-relevant prognostic gene signature for BRCA. METHODS Cuproptosis-relevant subtypes of BRCA were obtained by consensus clustering. Differential expression analysis was implemented using the 'limma' package. Univariate Cox and multivariate Cox analyses were performed to determine a cuproptosis-relevant prognostic gene signature. The signature was constructed and validated in distinct datasets. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were also conducted using the prognostic signature to uncover the underlying molecular mechanisms. ESTIMATE and CIBERSORT algorithms were applied to probe the linkage between the gene signature and tumor microenvironment (TME). Immunotherapy responsiveness was assessed using the Tumor Immune Dysfunction and Exclusion (TIDE) web tool. Real-time quantitative PCR (RT-qPCR) was performed to detect the expressions of cuproptosis-relevant prognostic genes in breast cancer cell lines. RESULTS Thirty-eight cuproptosis-associated differentially expressed genes (DEGs) in BRCA were mined by consensus clustering and differential expression analysis. Based on univariate Cox and multivariate Cox analyses, six cuproptosis-relevant prognostic genes, namely SAA1, KRT17, VAV3, IGHG1, TFF1, and CLEC3A, were mined to establish a corresponding signature. The signature was validated using external validation sets. GSVA and GSEA showed that multiple cell cycle-linked and immune-related pathways along with biological processes were associated with the signature. The results ESTIMATE and CIBERSORT analyses revealed significantly different TMEs between the two Cusig score subgroups. Finally, RT-qPCR analysis of cell lines further confirmed the expressional trends of SAA1, KRT17, IGHG1, and CLEC3A. CONCLUSION Taken together, we constructed a signature for projecting the overall survival of BRCA patients and our findings authenticated the cuproptosis-relevant prognostic genes, which are expected to provide a basis for developing prognostic molecular biomarkers and an in-depth understanding of the relationship between cuproptosis and BRCA.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Hening Sun
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Changcheng Yang
- Department of The First Affiliated Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Wei Wang
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Wenzhi Lyu
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Kejian Zou
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Fan Zhang
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Zhijun Dai
- Department of The First Affiliated Hospital, Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Xionghui He
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Huaying Dong
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| |
Collapse
|
4
|
Al-Azzawi HMA, Paolini R, Cirillo N, O’Reilly LA, Mormile I, Moore C, Yap T, Celentano A. Eosinophils in Oral Disease: A Narrative Review. Int J Mol Sci 2024; 25:4373. [PMID: 38673958 PMCID: PMC11050291 DOI: 10.3390/ijms25084373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
The prevalence of diseases characterised by eosinophilia is on the rise, emphasising the importance of understanding the role of eosinophils in these conditions. Eosinophils are a subset of granulocytes that contribute to the body's defence against bacterial, viral, and parasitic infections, but they are also implicated in haemostatic processes, including immunoregulation and allergic reactions. They contain cytoplasmic granules which can be selectively mobilised and secrete specific proteins, including chemokines, cytokines, enzymes, extracellular matrix, and growth factors. There are multiple biological and emerging functions of these specialised immune cells, including cancer surveillance, tissue remodelling and development. Several oral diseases, including oral cancer, are associated with either tissue or blood eosinophilia; however, their exact mechanism of action in the pathogenesis of these diseases remains unclear. This review presents a comprehensive synopsis of the most recent literature for both clinicians and scientists in relation to eosinophils and oral diseases and reveals a significant knowledge gap in this area of research.
Collapse
Affiliation(s)
- Huda Moutaz Asmael Al-Azzawi
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (H.M.A.A.-A.); (R.P.); (N.C.); (C.M.); (T.Y.)
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (H.M.A.A.-A.); (R.P.); (N.C.); (C.M.); (T.Y.)
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (H.M.A.A.-A.); (R.P.); (N.C.); (C.M.); (T.Y.)
| | - Lorraine Ann O’Reilly
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ilaria Mormile
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Caroline Moore
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (H.M.A.A.-A.); (R.P.); (N.C.); (C.M.); (T.Y.)
| | - Tami Yap
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (H.M.A.A.-A.); (R.P.); (N.C.); (C.M.); (T.Y.)
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (H.M.A.A.-A.); (R.P.); (N.C.); (C.M.); (T.Y.)
| |
Collapse
|
5
|
Yu Q, Xie T, Zhang Y, Pan T, Tan Y, Qin H, Yan S. Exploration of SERPINA family functions and prognostic value in breast cancer based on transcriptome and in vitro analysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:1951-1967. [PMID: 38069587 DOI: 10.1002/tox.24079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024]
Abstract
Breast cancer poses a significant risk to women worldwide, yet specific role of SERPINA gene family in breast cancer remains unclarified. Data were collected from online databases. SERPINA family gene expression was presented, and prognosis value was evaluated. Multi-omics methods were employed to explore the SERPINA-related biological processes, followed by comprehensive analyses of their roles in breast cancer. Single-cell data were analyzed to characterize the SERPINA family gene expression in different cell clusters. We selected SERPINA5 as the target gene. Via pan-cancer analysis, SERPINA5 was also investigated in various cancers. The experimental validation was conducted in MDA-MB-231 cell line eventually. SERPINA family showed differential expression in breast cancer, which were mainly expressed in myeloid cells, epithelial cells, and dendritic cells. SERPINA5 expression was upregulated in breast cancer, which was associated with a better prognosis. Immune infiltration illustrated the positive correlativity between SERPINA5 intensity and eosinophilic recruitment. Pan-cancer analysis indicated the function of SERPINA5 as a potential biomarker in other cancers. Finally, experimental validation demonstrated that SERPINA5 contributes to lower invasion and metastatic potential of breast cancer cells. With bioinformatics analysis, the significant role SERPINA family genes functioned in breast cancer was comprehensively explored, with SERPINA5 emerging as a key gene in suppressing breast cancer progression.
Collapse
Affiliation(s)
- Qiyi Yu
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tianyuan Xie
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yidong Zhang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tianyue Pan
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongmei Tan
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| | - Simin Yan
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Ren H, Wang Z, Zhang L, Zhu G, Li F, Chen B. Clinical significance of low expression of CADM3 in breast cancer and preliminary exploration of related mechanisms. BMC Cancer 2024; 24:367. [PMID: 38515057 PMCID: PMC10958964 DOI: 10.1186/s12885-024-12114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Cell adhesion molecule 3 (CADM3), a transmembrane glycoprotein on cell membranes, plays a role in the way of ligand and receptor interaction. However, there are few studies on CADM3 in tumors, and how it works in breast cancer (BC) remains unclear. METHODS The Cancer Genome Atlas (TCGA) database and clinical samples were used to analyze CADM3 expression and its correlation with clinicopathological factors and prognosis. Its correlation with immune infiltration was analyzed by TCGA. The effects of CADM3 on proliferation and migration were investigated by cell clonal formation, CCK-8, cell scratch and transwell assay. Protein interaction network was prepared and the function prediction of related genes was conducted. The correlation between CADM3 and MAPK pathway was further explored by western blot experiment. RESULTS The expression of CADM3 in BC tissues were significantly lower than that in adjacent normal tissues. High level of CADM3 was related to better prognosis of BC patients. CADM3 was an independent prognostic factor for BC. Expression of CADM3 was significantly associated with the status of ER and PR, age and PAM50 subtypes. CADM3 positively related to many immune infiltrating cells. Overexpression of CADM3 can notably reduce cell proliferation and migration. CADM3 was related to MAPK pathway and the phosphorylation of ERK1/2 and JNK1 was inhibited in BC cells with high CADM3. CONCLUSIONS Our research reveals the clinical significance of CADM3 in BC and indicates the critical roles of CADM3 in immune infiltration and MAPK pathway.
Collapse
Affiliation(s)
- Huiyang Ren
- Department of Breast Surgery, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning, 110001, China.
| | - Zhen Wang
- Department of Breast Surgery, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning, 110001, China.
| | - Lei Zhang
- Department of Breast Surgery, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning, 110001, China.
| | - Guolian Zhu
- Department of Breast Surgery, the Fifth People's Hospital of Shenyang, 188 Xingshun Street, Tiexi District, Shenyang City, Liaoning, 110023, China.
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, Liaoning, 110122, China.
| | - Bo Chen
- Department of Breast Surgery, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning, 110001, China.
| |
Collapse
|
7
|
Xu T, Xu M, Xu Y, Cai X, Brenner MJ, Twigg J, Fei Z, Chen C. Developing and validating the model of tumor-infiltrating immune cell to predict survival in patients receiving radiation therapy for head and neck squamous cell carcinoma. Transl Cancer Res 2024; 13:394-412. [PMID: 38410204 PMCID: PMC10894341 DOI: 10.21037/tcr-23-2345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024]
Abstract
Background Radiotherapy (RT) is a mainstay of head and neck squamous cell carcinoma (HNSCC) treatment. Due to the influence of RT on tumor cells and immune/stromal cells in microenvironment, some studies suggest that immunologic landscape could shape treatment response. To better predict the survival based on genomic data, we developed a prognostic model using tumor-infiltrating immune cell (TIIC) signature to predict survival in patients undergoing RT for HNSCC. Methods Gene expression data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Data from HNSCC patients undergoing RT were extracted for analysis. TIICs prevalence in HNSCC patients was quantified by gene set variation analysis (GSVA) algorithm. TIICs and post-RT survival were analyzed using univariate Cox regression analysis and used to construct and validate a tumor-infiltrating cells score (TICS). Results Five of 26 immune cells were significantly associated with HNSCC prognosis in the training cohort (all P<0.05). Kaplan-Meier (KM) survival curves showed that patients in the high TICS group had better survival outcomes (log-rank test, P<0.05). Univariate analyses demonstrated that the TICS had independent prognostic predictive ability for RT outcomes (P<0.05). Patients with high TICS scores showed significantly higher expression of immune-related genes. Functional pathway analyses further showed that the TICS was significantly related to immune-related biological process. Stratified analyses supported integrating TICS and tumor mutation burden (TMB) into individualized treatment planning, as an adjunct to classification by clinical stage and human papillomavirus (HPV) infection. Conclusions The TICS model supports a personalized medicine approach to RT for HNSCC. Increased prevalence of TIIC within the tumor microenvironment (TME) confers a better prognosis for patients undergoing treatment for HNSCC.
Collapse
Affiliation(s)
- Ting Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Mengting Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yiying Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xiaojun Cai
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Michael J. Brenner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joshua Twigg
- School of Dentistry, University of Leeds, Leeds, UK
| | - Zhaodong Fei
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Chuanben Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
8
|
Kobayashi G, Imai T, Sentani K. Distribution and Clinicopathological Features of Mott Cells (Plasma Cells Containing Russell Bodies) in Gastric Cancer: Presence of Mott Cells Is Associated with Favorable Prognosis. J Clin Med 2024; 13:658. [PMID: 38337351 PMCID: PMC10856670 DOI: 10.3390/jcm13030658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric cancer (GC) is still one of the leading causes of cancer-related mortality. We previously reported the relationship between histological heterogeneity of tumor cells and molecular features in GC. The tumor microenvironment also has a crucial role in GC progression and therapeutic resistance. In this study, we focused on the tumor microenvironment, especially inflammatory cells in GC. Using GC tissue slides, we investigated the distribution and clinicopathological significance of inflammatory cell counts including eosinophils, neutrophils, lymphocytes, and plasma cells. Additionally, we investigated the relationship between Mott cells (plasma cells containing Russell bodies) and clinicopathological features. In neoplastic gastric mucosa, a high number of plasma cells was associated with low T-grade, early stage, and good prognosis. We then focused on Mott cells and found that their presence in neoplastic gastric mucosa was associated with lower T and N grades, early stage, and Helicobacter pylori infection and was inversely associated with CD44 and EGFR expression. Additionally, the presence of Mott cells was associated with good prognosis in advanced GC and was an independent favorable prognostic predictor. The presence of Mott cells in GC might be one useful prognostic predictor, and Mott cells might have an important role in the carcinogenesis of H. pylori infection.
Collapse
Affiliation(s)
- Go Kobayashi
- Laboratory of Molecular Pathology, Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan;
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takeharu Imai
- Department of Surgical Oncology, Graduate School of Medicine Gifu University, Gifu 501-1194, Japan;
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
9
|
SHEN JUAN, ZHANG WEIYU, JIN QINQIN, GONG FUYU, ZHANG HEPING, XU HONGLIANG, LI JIEJIE, YAO HUI, JIANG XIYA, YANG YINTING, HONG LIN, MEI JIE, SONG YANG, ZHOU SHUGUANG. Polo-like kinase 1 as a biomarker predicts the prognosis and immunotherapy of breast invasive carcinoma patients. Oncol Res 2023; 32:339-351. [PMID: 38186570 PMCID: PMC10765123 DOI: 10.32604/or.2023.030887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/03/2023] [Indexed: 01/09/2024] Open
Abstract
Background Invasive breast carcinoma (BRCA) is associated with poor prognosis and high risk of mortality. Therefore, it is critical to identify novel biomarkers for the prognostic assessment of BRCA. Methods The expression data of polo-like kinase 1 (PLK1) in BRCA and the corresponding clinical information were extracted from TCGA and GEO databases. PLK1 expression was validated in diverse breast cancer cell lines by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Single sample gene set enrichment analysis (ssGSEA) was performed to evaluate immune infiltration in the BRCA microenvironment, and the random forest (RF) and support vector machine (SVM) algorithms were used to screen for the hub infiltrating cells and calculate the immunophenoscore (IPS). The RF algorithm and COX regression model were applied to calculate survival risk scores based on the PLK1 expression and immune cell infiltration. Finally, a prognostic nomogram was constructed with the risk score and pathological stage, and its clinical potential was evaluated by plotting calibration charts and DCA curves. The application of the nomogram was further validated in an immunotherapy cohort. Results PLK1 expression was significantly higher in the tumor samples in TCGA-BRCA cohort. Furthermore, PLK1 expression level, age and stage were identified as independent prognostic factors of BRCA. While the IPS was unaffected by PLK1 expression, the TMB and MATH scores were higher in the PLK1-high group, and the TIDE scores were higher for the PLK1-low patients. We also identified 6 immune cell types with high infiltration, along with 11 immune cell types with low infiltration in the PLK1-high tumors. A risk score was devised using PLK1 expression and hub immune cells, which predicted the prognosis of BRCA patients. In addition, a nomogram was constructed based on the risk score and pathological staging, and showed good predictive performance. Conclusions PLK1 expression and immune cell infiltration can predict post-immunotherapy prognosis of BRCA patients.
Collapse
Affiliation(s)
- JUAN SHEN
- School of Big Data and Artificial Intelligence, Anhui Xinhua University, Hefei, 230088, China
| | - WEIYU ZHANG
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, 230001, China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, 230032, China
| | - QINQIN JIN
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, 230001, China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, 230032, China
| | - FUYU GONG
- Departments of Breast Surgery, Fuyang Women and Children’s Hospital, Fuyang, 236000, China
| | - HEPING ZHANG
- Departments of Pathology, Anhui Province Maternity and Child Health Hospital, Hefei, 230001, China
| | - HONGLIANG XU
- Departments of Pathology, Anhui Province Maternity and Child Health Hospital, Hefei, 230001, China
| | - JIEJIE LI
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, 230001, China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, 230032, China
| | - HUI YAO
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, 230001, China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, 230032, China
| | - XIYA JIANG
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, 230001, China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, 230032, China
| | - YINTING YANG
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, 230001, China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, 230032, China
| | - LIN HONG
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, 230001, China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, 230032, China
| | - JIE MEI
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, 230001, China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, 230032, China
| | - YANG SONG
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - SHUGUANG ZHOU
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Anhui Province Maternity and Child Healthcare Hospital, Hefei, 230001, China
- Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, 230032, China
- Department of Gynecology and Obstetrics, Linquan Maternity and Child Healthcare Hospital, Fuyang, 236400, China
| |
Collapse
|
10
|
Wang Z, Ren H, Zhu G, Zhang L, Cao H, Chen B. High expression of CCDC69 is correlated with immunotherapy response and protective effects on breast cancer. BMC Cancer 2023; 23:974. [PMID: 37828454 PMCID: PMC10571395 DOI: 10.1186/s12885-023-11411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/16/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND As a molecule controlling the assembly of central spindles and recruitment of midzone component, coiled-coil domain-containing protein 69 (CCDC69) plays an important role in multiple cancers. Currently, the relationships between CCDC69 and immune infiltration or immunotherapy in breast cancer remain unclear. METHODS The expression and prognostic significance of CCDC69 in breast cancer were comprehensively analyzed by quantitative real-time PCR, immunohistochemical staining and various databases. The data source of differentially expressed genes, gene set enrichment analysis, and immune cell infiltration analysis came from The Cancer Genome Atlas (TCGA) database. Single-cell analysis based on IMMUcan database was used. The protein-protein interaction network was developed applying STRING, Cytoscape, CytoHubba, and GeneMANIA. TISIDB was employed in analyzing the CCDC69 co-expressed immune related genes. The correlations between CCDC69 and immunotherapy or immune-related scores were analyzed by CAMOIP and TISMO. Ctr-db was also used to conduct drug sensitivity analysis. RESULTS The mRNA of CCDC69 was downregulated in breast cancer tissues compared with normal tissues. Higher CCDC69 expression was associated with a better breast cancer prognosis. Enrichment analysis showed that the co-expression genes of CCDC69 were mainly related to immune-related pathways. The expression of CCDC69 was found to be positively correlated with multiple tumor-suppression immune infiltration cells, especially T cells and dendritic cells. Meanwhile, high CCDC69 expression can predict better immunotherapy responses when compared with low CCDC69 expression. After the interferon-gamma treatment, the CCDC69 expression was elevated in vitro. CCDC69 expression was a reliable predictor for the response status of two therapeutic strategies in breast cancer. CONCLUSIONS Our research revealed the clinical significance of CCDC69 in breast cancer and validated the critical roles of CCDC69 in the tumor immune infiltration and immunotherapy responses.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huiyang Ren
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Guolian Zhu
- Department of Breast Surgery, The Fifth People's Hospital of Shenyang, Shenyang, China
| | - Lei Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Hongyi Cao
- Department of Pathology, The First Hospital of China Medical University and College of Basic Medical Sciences, Shenyang, China.
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Tadesse FA, Leminie AA. Effects of Adriamycin-Cytoxan chemotherapy on hematological and electrolyte parameters among breast cancer patients. Front Oncol 2023; 13:1103013. [PMID: 37205205 PMCID: PMC10185890 DOI: 10.3389/fonc.2023.1103013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
Background Adriamycin-Cytoxan (AC) is a common chemotherapy treatment for breast cancer (BC) patients. Its electrolyte and hematological adverse effects have not been addressed adequately. Objective This study aimed to assess the effect of AC on hematological and electrolyte parameters among BC patients. Methods A hospital-based comparative cross-sectional study design was conducted from March to November 2022. Randomly selected AC-treated (n=100) and untreated (n=100) patients were included. Structured questionnaire and medical records were used to collect sociodemographic data. Anthropometric parameters, hematological indices, and serum electrolytes were measured. Cobas Integra 400+and SYSMEX-XT-4000i were used to analyze serum electrolytes and hematological indices respectively. The data were analyzed using SPSS version 25. Independent t-test and chi-square test were used. p-value <0.05 was considered statistically significant. Results AC-treated patients' mean total white blood cell (TWBC), neutrophil (NE), lymphocyte (LY), red blood cell (RBC), hemoglobin (Hgb), hematocrit (HCT), and sodium(Na+) values were significantly reduced (p<0.05) than patients with no treatment. However, mean eosinophils (EO), platelet (PLT) counts, red cell distribution-width (RDW), potassium (K+), and plateletcrit (PCT values were significantly increased (p<0.05). Conclusion The majority of blood cells and serum sodium were affected by AC treatment. Incorporating these parameters in the routine analysis and further studies on the detailed mechanism of action of this drug is required.
Collapse
Affiliation(s)
| | - Abebaye Aragaw Leminie
- Department of Physiology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
12
|
Abdel-Hamid HA, Marey H, Ibrahim MFG. Hemin protects against cell stress induced by estrogen and progesterone in rat mammary glands via modulation of Nrf2/HO-1 and NF-κB pathways. Cell Stress Chaperones 2023; 28:289-301. [PMID: 36930344 PMCID: PMC10167073 DOI: 10.1007/s12192-023-01337-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/19/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Mammary gland hyperplasia is one of the risk factors for breast cancer. Till date, there is no study that has addressed the effect of hemin in this condition. Thus, this study was designed to evaluate the effect of the heme oxygenase 1 (HO-1) inducer (hemin) and its inhibitor (zinc protoporphyrin-IX) (ZnPP-IX) on mammary gland hyperplasia (MGH) induced by estrogen and progesterone in adult albino rats. Forty adult female albino rats were divided into the control group, MGH group, MGH + Hemin group, and MGH + Hemin + ZnPP-IX group. Serum levels of estradiol and progesterone were measured. Breast tissues were taken for estimation of oxidative, inflammatory, and apoptotic markers. Mammary gland histology was performed, and expression of Ki-67, Beclin, and P53 in breast tissue was also measured. Estrogen and progesterone administration induced hyperplasia of cells lining the ducts of the breast tissues associated with increased diameter and height of the nipples as well as increased oxidative stress markers, inflammatory markers, antiapoptotic markers, and cell autophagy. Hemin administration during induction of MGH can reverse all the affected parameters. Then, these effects were abolished by ZnPP-IX administration. We concluded that hemin administration can antagonize the cell stress induced by estrogen and progesterone and protect against the development of mammary gland hyperplasia via modulation of Nrf2/HO-1 and NF-κB pathways.
Collapse
Affiliation(s)
- Heba A. Abdel-Hamid
- Department of Medical Physiology, Faculty of Medicine, Minia University, Minia, 61111 Egypt
- Department of Medical Physiology, Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
| | - Heba Marey
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, Minia, 61111 Egypt
| | | |
Collapse
|
13
|
Fröhlich E. The Variety of 3D Breast Cancer Models for the Study of Tumor Physiology and Drug Screening. Int J Mol Sci 2023; 24:ijms24087116. [PMID: 37108283 PMCID: PMC10139112 DOI: 10.3390/ijms24087116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer is the most common cancer in women and responsible for multiple deaths worldwide. 3D cancer models enable a better representation of tumor physiology than the conventional 2D cultures. This review summarizes the important components of physiologically relevant 3D models and describes the spectrum of 3D breast cancer models, e.g., spheroids, organoids, breast cancer on a chip and bioprinted tissues. The generation of spheroids is relatively standardized and easy to perform. Microfluidic systems allow control over the environment and the inclusion of sensors and can be combined with spheroids or bioprinted models. The strength of bioprinting relies on the spatial control of the cells and the modulation of the extracellular matrix. Except for the predominant use of breast cancer cell lines, the models differ in stromal cell composition, matrices and fluid flow. Organoids are most appropriate for personalized treatment, but all technologies can mimic most aspects of breast cancer physiology. Fetal bovine serum as a culture supplement and Matrigel as a scaffold limit the reproducibility and standardization of the listed 3D models. The integration of adipocytes is needed because they possess an important role in breast cancer.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
14
|
Hasan N, Hasani NAH, Omar E, Sham FR, Fuad SBSA, Karim MKA, Ibahim MJ. A single targeted gamma-ray irradiation induced an acute modulation of immune cells and related cytokines in EMT6 mouse-bearing tumour model. Cancer Biomark 2023; 38:61-75. [PMID: 37522193 DOI: 10.3233/cbm-220268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
BACKGROUND A complicated interplay between radiation doses, tumour microenvironment (TME), and host immune system is linked to the active participation of immune response. OBJECTIVE The effects of single targeted 2 Gy and 8 Gy gamma-ray irradiations on the immune cell population (lymphocytes, B-cells, T-cells, neutrophils, eosinophils, and macrophages) in EMT6 mouse-bearing tumour models was investigated. METHODS The effects of both irradiation doses in early (96 hours) and acute phase (5 to 11 days) post-irradiation on immune parameters were monitored in blood circulation and TME using flow cytometry. Simultaneously, selected cytokines related to immune cells within the TME were measured using multiplex ELISA. RESULTS A temporary reduction in systemic total white blood count (TWBC) resulted from an early phase (96 hours) of gamma-ray irradiation at 2 Gy and 8 Gy compared to sham control group. No difference was obtained in the acute phase. Neutrophils dominated among other immune cells in TME in sham control group. Eosinophils in TME was significantly increased after 8 Gy treatment in acute phase compared to sham control (p< 0.005). Furthermore, the increment of tumour necrosis (TNF)-α, eotaxin and interleukin (IL)-7 (p< 0.05) in both treatment groups and phases were associated with anti-tumour activities within TME by gamma-ray irradiation. CONCLUSION The temporary changes in immune cell populations within systemic circulation and TME induced by different doses of gamma-ray irradiation correlated with suppression of several pro-tumorigenic cytokines in mouse-bearing EMT6 tumour models.
Collapse
Affiliation(s)
- Nurhaslina Hasan
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Faculty of Dentistry, University Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | | | - Effat Omar
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Fatihah Ronny Sham
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | | | | | | |
Collapse
|
15
|
Liu X, Cui Q. Identification of CISD1 as a Prognostic Biomarker for Breast Cancer. Int J Gen Med 2022; 15:8451-8465. [PMID: 36507250 PMCID: PMC9729735 DOI: 10.2147/ijgm.s388537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Although CISD1 (CDGSH iron sulfur domain 1) is upregulated in many cancer types, the potential role of CISD1 in breast cancer is still unclear. The purpose of this study was to investigate its clinical significance in breast cancer. Methods We obtained 1109 breast cancer samples and 113 normal samples from The Cancer Genome Atlas (TCGA) and GTEx databases to demonstrate the relationship between CISD1 expression and pancancer characteristics. We analysed the relationship between CISD1 and breast cancer using the t-test and the chi-square test to evaluate the expression level of CISD1 and its clinical significance in breast cancer. The prognostic value of CISD1 in breast cancer was determined by Kaplan‒Meier and Cox regression analyses. The biological pathways were screened by gene set analysis and Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and single-sample gene set enrichment analysis (ssGSEA), of which the correlation between the level of immune infiltration and the expression of CISD1 in breast cancer was then analysed. Finally, we verified the conclusion by qPCR, immunohistochemistry, and CCK8. Results CISD1 is highly expressed in breast cancer patients. In addition, we verified a higher expression of CISD1 expressed in the BRCA (breast cancer) cell line, whereas CISD1 has a high diagnostic value, with an AUC of 0.718. Kaplan‒Meier survival and Cox regression analyses showed that high expression of CISD1 was independently associated with adverse clinical outcomes. In turn, GO and KEGG analyses showed that most genes were related to rRNA metabolic process, rRNA processing. Moreover, PCR and immunohistochemistry showed that CISD1 in breast cancer tissues was upregulated significantly, with CCK8 results showing that the proliferation of breast cancer cells decreased after CISD1 knockout. Conclusion A high level of CISD1 is associated with poor prognosis and immune infiltration in breast cancer.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, People’s Republic of China,Correspondence: Xiao Liu, Email
| | - Qianqian Cui
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, People’s Republic of China,Department of Breast Surgery, Altaira Nursing Service, Campbelltown, NSW, SA 5074, Australia
| |
Collapse
|
16
|
Hashemi M, Arani HZ, Orouei S, Fallah S, Ghorbani A, Khaledabadi M, Kakavand A, Tavakolpournegari A, Saebfar H, Heidari H, Salimimoghadam S, Entezari M, Taheriazam A, Hushmandi K. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions. Biomed Pharmacother 2022; 155:113774. [DOI: 10.1016/j.biopha.2022.113774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
|
17
|
Patterns of immune infiltration and survival in endocrine therapy-treated ER-positive breast cancer: A computational study of 1900 patients. Biomed Pharmacother 2022; 155:113787. [DOI: 10.1016/j.biopha.2022.113787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
|
18
|
Wu J, Luo D, Li S. Ovo Like Zinc Finger 2 (OVOL2) Suppresses Breast Cancer Stem Cell Traits and Correlates with Immune Cells Infiltration. BREAST CANCER: TARGETS AND THERAPY 2022; 14:211-227. [PMID: 35996562 PMCID: PMC9391936 DOI: 10.2147/bctt.s363114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Jiafa Wu
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, People’s Republic of China
- Correspondence: Jiafa Wu, School of Food and Bioengineering, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, People’s Republic of China, Email
| | - Dongping Luo
- The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - Shengnan Li
- School of Medicine, Henan Polytechnic University, Jiaozuo, People’s Republic of China
| |
Collapse
|