1
|
Xu R, Ooi HS, Bian L, Ouyang L, Sun W. Dynamic hydrogels for biofabrication: A review. Biomaterials 2025; 320:123266. [PMID: 40120174 DOI: 10.1016/j.biomaterials.2025.123266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Reversibly crosslinked dynamic hydrogels have emerged as a significant material platform for biomedical applications owing to their distinctive time-dependent characteristics, including shear-thinning, self-healing, stress relaxation, and creep. These physical properties permit the use of dynamic hydrogels as injectable carriers or three-dimensional printable bioinks. It is noteworthy that matrix dynamics can serve as physical cues that stimulate cellular processes. Therefore, dynamic hydrogels are preferred for tissue engineering and biofabrication, which seek to create functional tissue constructs that require regulation of cellular processes. This review summarizes the critical biophysical properties of dynamic hydrogels, various cellular processes and related mechanisms triggered by hydrogel dynamics, particularly in three-dimensional culture scenarios. Subsequently, we present an overview of advanced biofabrication techniques, particularly 3D bioprinting, of dynamic hydrogels for the large-scale production of tissue and organ engineering models. This review presents an overview of the strategies that can be used to expand the range of applications of dynamic hydrogels in biofabrication, while also addressing the challenges and opportunities that arise in the field. This review highlights the importance of matrix dynamics in regulating cellular processes and elucidates strategies for leveraging them in the context of biofabrication.
Collapse
Affiliation(s)
- Runze Xu
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Hon Son Ooi
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Liliang Ouyang
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China.
| | - Wei Sun
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China; Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Nasiripour S, Pishbin F, Seyyed Ebrahimi SA. 3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2025; 8:582-599. [PMID: 39764630 DOI: 10.1021/acsabm.4c01476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.3 wt % adipic acid hydrazide, and alginate (ALG) (2, 5, and 10 wt %). Bioactive glass (BG) (0 and 5 w/v %) particles were incorporated into the plain matrix to obtain an osteogenic composite hydrogel. The material was characterized via rheology, field emission scanning electron microscopy/energy-dispersive X-ray spectroscopy (FESEM/EDS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), swelling, degradation, bioactivity, and in vitro cellular assessments. Rheological evaluations confirmed that the specimen with 0 w/v % BG and 5 wt % ALG exhibited the highest G', G″, and viscosity values. All specimens exhibited self-healing, provided by two reversible dynamic bonds, namely, imine and acylhydrazone. Bioactivity evaluation by SBF immersion revealed the formation of HA particles on the composite hydrogels. MTT cytotoxicity assay on MG63 indicated that the composite sample containing 5 w/v % BG and 10 wt % ALG had the highest cell viability (95 ± 1.02%) by culture day 3. The developed approach presents a promising hydrogel ink formulation with a high potential for extrusion-based 3D printing of bone TE constructs.
Collapse
Affiliation(s)
- Saba Nasiripour
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran
| | - Fatemehsadat Pishbin
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran
| | - S A Seyyed Ebrahimi
- Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran
| |
Collapse
|
3
|
Khaled Wassif R, Daihom BA, Maniruzzaman M. FRESH 3D printing of zoledronic acid-loaded chitosan/alginate/hydroxyapatite composite thermosensitive hydrogel for promoting bone regeneration. Int J Pharm 2024; 667:124898. [PMID: 39500473 DOI: 10.1016/j.ijpharm.2024.124898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/09/2024]
Abstract
The aim of this study was to develop a composite thermosensitive hydrogel for bone regeneration applications. This hydrogel consisted of chitosan, alginate and hydroxyapatite, and was loaded with zoledronic acid as a model drug. The feasibility of three-dimensional (3D) printing of the thermosensitive hydrogel using the extrusion based technique was investigated. The 3D printing technique called Freeform Reversible Embedded Suspended Hydrogel (FRESH) printing was employed for this purpose. To characterize the composite hydrogels, several tests were conducted. The gelation time, rheological properties, and in vitro drug release were analyzed. Additionally, the cell viability test on human osteosarcoma MG-63 cells for the composite hydrogel was assessed using an MTT assay. The results of the study showed that the zoledronic acid-loaded composite thermosensitive hydrogel was successfully printed using the FRESH 3D printing technique which was not possible otherwise i.e., by using traditional 3D printing techniques. Further examination of the printed constructs using a Scanning Electron Microscope revealed the presence of porous and layered structures. The gelation times of the composite thermosensitive hydrogel was determined to be 10 and 20 min, respectively for scaffolds with and without HA, indicating the successful formation of the gel within a reasonable time to the FRESH technique. The flow behavior of the hydrogel was found to be pseudoplastic, following a non-Newtonian flow pattern with Farrow's constant (N) values of 1.708 and 1.853 for scaffolds with and without hydroxyapatite, respectively. In terms of drug release, scaffolds prepared with and without hydroxyapatite reached nearly 100% of zoledronic acid release in 360 h and 48 h, respectively. The cell viability test on human osteosarcoma MG-63 cells using MTT assay has shown increased cell viability % in the case of composite hydrogel, indicating biocompatibility of the scaffold. Overall, this study successfully developed a composite thermosensitive hydrogel loaded with zoledronic acid for bone regeneration applications and was 3D printed using the FRESH 3D printing technique. The results of this study provide valuable insights into the potential use of this composite hydrogel for future biomedical applications.
Collapse
Affiliation(s)
- Reem Khaled Wassif
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Baher A Daihom
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohammed Maniruzzaman
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
4
|
Herzog J, Franke L, Lai Y, Gomez Rossi P, Sachtleben J, Weuster-Botz D. 3D bioprinting of microorganisms: principles and applications. Bioprocess Biosyst Eng 2024; 47:443-461. [PMID: 38296889 PMCID: PMC11003907 DOI: 10.1007/s00449-023-02965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024]
Abstract
In recent years, the ability to create intricate, live tissues and organs has been made possible thanks to three-dimensional (3D) bioprinting. Although tissue engineering has received a lot of attention, there is growing interest in the use of 3D bioprinting for microorganisms. Microorganisms like bacteria, fungi, and algae, are essential to many industrial bioprocesses, such as bioremediation as well as the manufacture of chemicals, biomaterials, and pharmaceuticals. This review covers current developments in 3D bioprinting methods for microorganisms. We go over the bioink compositions designed to promote microbial viability and growth, taking into account factors like nutrient delivery, oxygen supply, and waste elimination. Additionally, we investigate the most important bioprinting techniques, including extrusion-based, inkjet, and laser-assisted approaches, as well as their suitability with various kinds of microorganisms. We also investigate the possible applications of 3D bioprinted microbes. These range from constructing synthetic microbial consortia for improved metabolic pathway combinations to designing spatially patterned microbial communities for enhanced bioremediation and bioprocessing. We also look at the potential for 3D bioprinting to advance microbial research, including the creation of defined microenvironments to observe microbial behavior. In conclusion, the 3D bioprinting of microorganisms marks a paradigm leap in microbial bioprocess engineering and has the potential to transform many application areas. The ability to design the spatial arrangement of various microorganisms in functional structures offers unprecedented possibilities and ultimately will drive innovation.
Collapse
Affiliation(s)
- Josha Herzog
- Department of Energy and Process Engineering, TUM School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Lea Franke
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Yingyao Lai
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Pablo Gomez Rossi
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Janina Sachtleben
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Dirk Weuster-Botz
- Department of Energy and Process Engineering, TUM School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany.
| |
Collapse
|
5
|
Rasouli R, Sweeney C, Frampton JP. Heterogeneous and Composite Bioinks for 3D-Bioprinting of Complex Tissue. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2024; 3:108-126. [PMID: 40028238 PMCID: PMC11868245 DOI: 10.1007/s44174-024-00171-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/17/2024] [Indexed: 03/05/2025]
Abstract
Bioink composition is a key consideration for the 3D-bioprinting of complex and stable structures used to model tissues and as tissue constructs for regenerative medicine. An emerging and industrially important area of research is the use of micro- and nanofillers to improve bioink performance without dramatically altering the physicochemical properties of the polymeric material that forms the bulk of the printed structure. The purpose of this review is to provide a comprehensive overview of emerging nanomaterial fillers designed to create heterogeneous and composite bioinks for 3D-bioprinting of complex functional tissues. We outline the criteria that must be considered when developing such a bioink and discuss applications where the fillers impart stimuli responsiveness, e.g., when exposed to magnetic fields, electrical fields, and light. We further highlight how the use of such fillers can enable non-destructive imaging to monitor scaffold placement and integrity following implantation.
Collapse
Affiliation(s)
- Rahimeh Rasouli
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| | - Crystal Sweeney
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| | - John P. Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| |
Collapse
|
6
|
Zhang R, Chang SJ, Jing Y, Wang L, Chen CJ, Liu JT. Application of chitosan with different molecular weights in cartilage tissue engineering. Carbohydr Polym 2023; 314:120890. [PMID: 37173038 DOI: 10.1016/j.carbpol.2023.120890] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
Cartilage tissue engineering involves the invention of novel implantable cartilage replacement materials to help heal cartilage injuries that do not heal themselves, aiming to overcome the shortcomings of current clinical cartilage treatments. Chitosan has been widely used in cartilage tissue engineering because of its similar structure to glycine aminoglycan, which is widely distributed in connective tissues. The molecular weight, as an important structural parameter of chitosan, affects not only the method of chitosan composite scaffold preparation but also the effect on cartilage tissue healing. Thus, this review identifies methods for the preparation of chitosan composite scaffolds with low, medium and high molecular weights, as well as a range of chitosan molecular weights appropriate for cartilage tissue repair, by summarizing the application of different molecular weights of chitosan in cartilage repair in recent years.
Collapse
Affiliation(s)
- Runjie Zhang
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shwu Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Yanzhen Jing
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - LiYuan Wang
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ching-Jung Chen
- Research Center for Materials Science and Opti-Electronic Technology, School of Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jen-Tsai Liu
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Zhou G, Zhu J, Jin L, Chen J, Xu R, Zhao Y, Yan T, Wan H. Salvianolic-Acid-B-Loaded HA Self-Healing Hydrogel Promotes Diabetic Wound Healing through Promotion of Anti-Inflammation and Angiogenesis. Int J Mol Sci 2023; 24:ijms24076844. [PMID: 37047818 PMCID: PMC10095058 DOI: 10.3390/ijms24076844] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023] Open
Abstract
Inflammatory dysfunction and angiogenesis inhibition are two main factors leading to the delayed healing of diabetic wounds. Hydrogels with anti-inflammatory and angiogenesis-promoting effects have been considered as promising wound care materials. Herein, a salvianolic acid B (SAB)-loaded hyaluronic acid (HA) self-healing hydrogel (HA/SAB) with anti-inflammatory and pro-angiogenesis capacities for diabetic wound healing is reported. The HA hydrogel was prepared via the covalent cross-linking of aldehyde groups in oxidized HA (OHA) and hydrazide groups in adipic dihydrazide (ADH)-modified HA (HA-ADH) with the formation of reversible acylhydrazone bonds. The obtained HA hydrogel exhibited multiple favorable properties such as porous structures, excellent self-healing properties, a sustainable release capacity of SAB, as well as excellent cytocompatibility. In addition, the effects of the SAB-loaded HA self-healing hydrogel were investigated via a full-thickness skin defect model using diabetic rats. The HA/SAB hydrogel showed enhanced skin regeneration effects with accelerated wound closure, shorter remaining dermal space length, thicker granulation tissue formation, and more collagen deposition. Furthermore, reduced inflammatory response and enhanced vascularization were found with HA/SAB2.5 hydrogel-treated wounds, indicating that the hydrogel promotes diabetic wound healing through the promotion of anti-inflammation and angiogenesis. Our results suggest that the fabricated SAB-loaded HA self-healing hydrogel is promising as a wound dressing for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Guoying Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiayan Zhu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liang Jin
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Chen
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ruojiao Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yali Zhao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Tingzi Yan
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Haitong Wan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
8
|
Sánchez-Fernández JA. Structural Strategies for Supramolecular Hydrogels and Their Applications. Polymers (Basel) 2023; 15:1365. [PMID: 36987146 PMCID: PMC10052692 DOI: 10.3390/polym15061365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Supramolecular structures are of great interest due to their applicability in various scientific and industrial fields. The sensible definition of supramolecular molecules is being set by investigators who, because of the different sensitivities of their methods and observational timescales, may have different views on as to what constitutes these supramolecular structures. Furthermore, diverse polymers have been found to offer unique avenues for multifunctional systems with properties in industrial medicine applications. Aspects of this review provide different conceptual strategies to address the molecular design, properties, and potential applications of self-assembly materials and the use of metal coordination as a feasible and useful strategy for constructing complex supramolecular structures. This review also addresses systems that are based on hydrogel chemistry and the enormous opportunities to design specific structures for applications that demand enormous specificity. According to the current research status on supramolecular hydrogels, the central ideas in the present review are classic topics that, however, are and will be of great importance, especially the hydrogels that have substantial potential applications in drug delivery systems, ophthalmic products, adhesive hydrogels, and electrically conductive hydrogels. The potential interest shown in the technology involving supramolecular hydrogels is clear from what we can retrieve from the Web of Science.
Collapse
Affiliation(s)
- José Antonio Sánchez-Fernández
- Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo 25294, Mexico
| |
Collapse
|
9
|
Dual-crosslinked hyaluronic acid hydrogel with self-healing capacity and enhanced mechanical properties. Carbohydr Polym 2022; 301:120372. [DOI: 10.1016/j.carbpol.2022.120372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
|
10
|
3D Bioprinted Chitosan-Based Hydrogel Scaffolds in Tissue Engineering and Localised Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14091978. [PMID: 36145727 PMCID: PMC9500618 DOI: 10.3390/pharmaceutics14091978] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Bioprinting is an emerging technology with various applications in developing functional tissue constructs for the replacement of harmed or damaged tissues and simultaneously controlled drug delivery systems (DDSs) for the administration of several active substances, such as growth factors, proteins, and drug molecules. It is a novel approach that provides high reproducibility and precise control over the fabricated constructs in an automated way. An ideal bioink should possess proper mechanical, rheological, and biological properties essential to ensure proper function. Chitosan is a promising natural-derived polysaccharide to be used as ink because of its attractive properties, such as biodegradability, biocompatibility, low cost, and non-immunogenicity. This review focuses on 3D bioprinting technology for the preparation of chitosan-based hydrogel scaffolds for the regeneration of tissues delivering either cells or active substances to promote restoration.
Collapse
|
11
|
Pan RL, Martyniak K, Karimzadeh M, Gelikman DG, DeVries J, Sutter K, Coathup M, Razavi M, Sawh-Martinez R, Kean TJ. Systematic review on the application of 3D-bioprinting technology in orthoregeneration: current achievements and open challenges. J Exp Orthop 2022; 9:95. [PMID: 36121526 PMCID: PMC9485345 DOI: 10.1186/s40634-022-00518-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Joint degeneration and large or complex bone defects are a significant source of morbidity and diminished quality of life worldwide. There is an unmet need for a functional implant with near-native biomechanical properties. The potential for their generation using 3D bioprinting (3DBP)-based tissue engineering methods was assessed. We systematically reviewed the current state of 3DBP in orthoregeneration. METHODS This review was performed using PubMed and Web of Science. Primary research articles reporting 3DBP of cartilage, bone, vasculature, and their osteochondral and vascular bone composites were considered. Full text English articles were analyzed. RESULTS Over 1300 studies were retrieved, after removing duplicates, 1046 studies remained. After inclusion and exclusion criteria were applied, 114 articles were analyzed fully. Bioink material types and combinations were tallied. Cell types and testing methods were also analyzed. Nearly all papers determined the effect of 3DBP on cell survival. Bioink material physical characterization using gelation and rheology, and construct biomechanics were performed. In vitro testing methods assessed biochemistry, markers of extracellular matrix production and/or cell differentiation into respective lineages. In vivo proof-of-concept studies included full-thickness bone and joint defects as well as subcutaneous implantation in rodents followed by histological and µCT analyses to demonstrate implant growth and integration into surrounding native tissues. CONCLUSIONS Despite its relative infancy, 3DBP is making an impact in joint and bone engineering. Several groups have demonstrated preclinical efficacy of mechanically robust constructs which integrate into articular joint defects in small animals. However, notable obstacles remain. Notably, researchers encountered pitfalls in scaling up constructs and establishing implant function and viability in long term animal models. Further, to translate from the laboratory to the clinic, standardized quality control metrics such as construct stiffness and graft integration metrics should be established with investigator consensus. While there is much work to be done, 3DBP implants have great potential to treat degenerative joint diseases and provide benefit to patients globally.
Collapse
Affiliation(s)
- Rachel L Pan
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kari Martyniak
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Makan Karimzadeh
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - David G Gelikman
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jonathan DeVries
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kelly Sutter
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Melanie Coathup
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Mehdi Razavi
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Rajendra Sawh-Martinez
- College of Medicine, University of Central Florida, Orlando, FL, USA.,Plastic and Reconstructive Surgery, AdventHealth, Orlando, FL, USA
| | - Thomas J Kean
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA.
| |
Collapse
|
12
|
Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues. Carbohydr Polym 2022; 296:119964. [DOI: 10.1016/j.carbpol.2022.119964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/17/2022] [Accepted: 08/04/2022] [Indexed: 12/27/2022]
|
13
|
Wang H, Yu H, Zhou X, Zhang J, Zhou H, Hao H, Ding L, Li H, Gu Y, Ma J, Qiu J, Ma D. An Overview of Extracellular Matrix-Based Bioinks for 3D Bioprinting. Front Bioeng Biotechnol 2022; 10:905438. [PMID: 35646886 PMCID: PMC9130719 DOI: 10.3389/fbioe.2022.905438] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/26/2022] [Indexed: 12/20/2022] Open
Abstract
As a microenvironment where cells reside, the extracellular matrix (ECM) has a complex network structure and appropriate mechanical properties to provide structural and biochemical support for the surrounding cells. In tissue engineering, the ECM and its derivatives can mitigate foreign body responses by presenting ECM molecules at the interface between materials and tissues. With the widespread application of three-dimensional (3D) bioprinting, the use of the ECM and its derivative bioinks for 3D bioprinting to replicate biomimetic and complex tissue structures has become an innovative and successful strategy in medical fields. In this review, we summarize the significance and recent progress of ECM-based biomaterials in 3D bioprinting. Then, we discuss the most relevant applications of ECM-based biomaterials in 3D bioprinting, such as tissue regeneration and cancer research. Furthermore, we present the status of ECM-based biomaterials in current research and discuss future development prospects.
Collapse
Affiliation(s)
- Haonan Wang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- Department of Clinical Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Huaqing Yu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Xia Zhou
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Jilong Zhang
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Hongrui Zhou
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Haitong Hao
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Lina Ding
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Huiying Li
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Yanru Gu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Junchi Ma
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Depeng Ma
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| |
Collapse
|
14
|
Hafezi M, Nouri Khorasani S, Zare M, Esmaeely Neisiany R, Davoodi P. Advanced Hydrogels for Cartilage Tissue Engineering: Recent Progress and Future Directions. Polymers (Basel) 2021; 13:4199. [PMID: 34883702 PMCID: PMC8659862 DOI: 10.3390/polym13234199] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Cartilage is a tension- and load-bearing tissue and has a limited capacity for intrinsic self-healing. While microfracture and arthroplasty are the conventional methods for cartilage repair, these methods are unable to completely heal the damaged tissue. The need to overcome the restrictions of these therapies for cartilage regeneration has expanded the field of cartilage tissue engineering (CTE), in which novel engineering and biological approaches are introduced to accelerate the development of new biomimetic cartilage to replace the injured tissue. Until now, a wide range of hydrogels and cell sources have been employed for CTE to either recapitulate microenvironmental cues during a new tissue growth or to compel the recovery of cartilaginous structures via manipulating biochemical and biomechanical properties of the original tissue. Towards modifying current cartilage treatments, advanced hydrogels have been designed and synthesized in recent years to improve network crosslinking and self-recovery of implanted scaffolds after damage in vivo. This review focused on the recent advances in CTE, especially self-healing hydrogels. The article firstly presents the cartilage tissue, its defects, and treatments. Subsequently, introduces CTE and summarizes the polymeric hydrogels and their advances. Furthermore, characterizations, the advantages, and disadvantages of advanced hydrogels such as multi-materials, IPNs, nanomaterials, and supramolecular are discussed. Afterward, the self-healing hydrogels in CTE, mechanisms, and the physical and chemical methods for the synthesis of such hydrogels for improving the reformation of CTE are introduced. The article then briefly describes the fabrication methods in CTE. Finally, this review presents a conclusion of prevalent challenges and future outlooks for self-healing hydrogels in CTE applications.
Collapse
Affiliation(s)
- Mahshid Hafezi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mohadeseh Zare
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK;
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 96179-76487, Iran;
| | - Pooya Davoodi
- School of Pharmacy and Bioengineering, Hornbeam Building, Keele University, Staffordshire ST5 5BG, UK
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, Keele University, Staffordshire ST4 7QB, UK
| |
Collapse
|