1
|
Matboli M, El-Attar NE, Abdelbaky I, Khaled R, Saad M, Ghani AMA, Barakat E, Guirguis RNM, Khairy E, Hamady S. Unveiling NLR pathway signatures: EP300 and CPN60 markers integrated with clinical data and machine learning for precision NASH diagnosis. Cytokine 2025; 188:156882. [PMID: 39923301 DOI: 10.1016/j.cyto.2025.156882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Given the increasing prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) and non-alcoholic steatohepatitis (NASH), there is a critical need for accurate non-invasive early diagnostic markers. OBJECTIVE This study aimed to validate NLRP3-related RNA signatures (EP300, CPN60, and ITGB1 mRNAs, miR-6881-5p, and LncRNA-RABGAP1L-DT-206) using an integrated molecular approach and advanced machine-learning algorithms to identify robust biomarkers for early diagnosis of NASH. METHODS A cohort of 237 participants (117 Healthy controls, 60 MAFLD, 120 NASH) was utilized. Twenty-five demographic, clinical, and molecular features were collected from each participant. Various machine learning models were trained on the dataset. RESULTS The Random Forest algorithm emerged as the most effective classifier. The model identified nine key features: EP300 mRNA, CPN60 mRNA, AST, D. bilirubin, Albumin, GGT, HbA1c, HOMA-IR, and BMI, achieving an impressive 97 % accuracy in distinguishing NASH from non-NASH cases. CONCLUSION The integration of molecular, clinical, and demographic data with machine learning algorithms provides a highly accurate method for the early diagnosis of NASH. This model holds promise for early detection in individuals at risk of progressing to cirrhosis or liver cancer and may aid in identifying new therapeutic targets for managing NASH.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical biochemistry and molecular biology department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Molecular biology Research Lab. Faculty of Oral and Dental Medicine, Misr International University, Egypt.
| | - Noha E El-Attar
- Information System Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha City, Egypt; Bioinformatics department, Faculty of Artificial Intelligence, Delta University for Science and Technology, Gamasa, 35712,Egypt.
| | - Ibrahim Abdelbaky
- Artificial Intelligence Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha, City, Egypt.
| | - Radwa Khaled
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University
| | - Maha Saad
- Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt.
| | | | - Eman Barakat
- Tropical Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | | | - Eman Khairy
- Medical biochemistry and molecular biology department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia.
| | - Shaimaa Hamady
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
2
|
Tian P, Xia H, Li X, Wang Y, Hu B, Yang Y, Sun G, Sui J. Identification and Assessment of lncRNAs and mRNAs in PM2.5-Induced Hepatic Steatosis. Int J Mol Sci 2025; 26:2808. [PMID: 40141450 PMCID: PMC11943408 DOI: 10.3390/ijms26062808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Research indicates that fine particulate matter (PM2.5) exposure is associated with the onset of non-alcoholic fatty liver disease (NAFLD), the most prevalent chronic liver disorder. However, the underlying pathogenesis mechanisms remain to be fully understood. Our study investigated the hub long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) associated with hepatic steatosis caused by PM2.5 exposure and their pathological mechanisms. The analysis of gene profiles in the GSE186900 dataset from the Gene Expression Omnibus (GEO) enabled the identification of 38 differentially expressed lncRNAs and 1945 mRNAs. To explore further, a co-expression network was established utilizing weighted gene co-expression network analysis (WGCNA). Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were utilized for functional enrichment analysis. Our analysis identified specific modules, particularly the blue and turquoise modules, which showed a strong correlation with NAFLD. Through functional enrichment analysis, we identified several lncRNAs (including Gm15446, Tmem181b-ps, Adh6-ps1, Gm5848, Zfp141, Rmrp, and Rb1) which may be involved in modulating NAFLD, multiple metabolic pathways, inflammation, cell senescence, apoptosis, oxidative stress, and various signaling pathways. The hub lncRNAs identified in our study provide novel biomarkers and potential targets for the diagnosis and treatment of NAFLD.
Collapse
Affiliation(s)
- Peixuan Tian
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (P.T.); (H.X.); (G.S.)
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (P.T.); (H.X.); (G.S.)
| | - Xinbao Li
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (P.T.); (H.X.); (G.S.)
| | - Ying Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (P.T.); (H.X.); (G.S.)
| | - Bihuan Hu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (P.T.); (H.X.); (G.S.)
| | - Yu Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (P.T.); (H.X.); (G.S.)
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (P.T.); (H.X.); (G.S.)
| | - Jing Sui
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
3
|
Soltanieh SK, Khastar S, Kaur I, Kumar A, Bansal J, Fateh A, Nathiya D, Husseen B, Rajabivahid M, Dehghani-Ghorbi M, Akhavan-Sigari R. Long Non-Coding RNAs in Non-Alcoholic Fatty Liver Disease; Friends or Foes? Cell Biochem Biophys 2025; 83:279-294. [PMID: 39377981 DOI: 10.1007/s12013-024-01555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 01/03/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a range of conditions that start with the accumulation of fat in the liver (hepatic steatosis) and can progress to more severe stages like steatohepatitis (NASH) and fibrosis without drinking alcohol. Environmental and genetic variables both contribute to MAFLD's development, with various biological processes and mediators involved at every phase. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that are not translated into protein and are over 200 nucleotides long. They can impact genes that encode protein by controlling transcriptional and post-transcriptional procedures. Dysregulation of lncRNA has been connected to several liver diseases, including MAFLD. Recent research has linked lncRNAs to MAFLD pathology in both patients and animal models. However, the roles of most lncRNAs in MAFLD pathology are still not well recognized. This review provides a comprehensive catalog of recently reported lncRNAs in the pathogenesis of MAFLD and summarizes the current knowledge of lncRNAs usage as therapeutic strategies in MAFLD, the most common liver disease. Collectively, lncRNA's targeting could potentially offer a therapeutic approach by modulating MAFLD.
Collapse
Affiliation(s)
| | - Sahar Khastar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka-560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand-831001, India
| | - Jaya Bansal
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India
| | - Ata Fateh
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| | - Mansour Rajabivahid
- Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mahmoud Dehghani-Ghorbi
- Hematology-Oncology Department, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warszawa, Poland
| |
Collapse
|
4
|
Nazir A, Nisa MU, Rahim MA, Mohamed Ahmed IA, Aljobair MO. Spirulina Unleashed: A Pancreatic Symphony to Restore Glycemic Balance and Improve Hyperlipidemia and Antioxidant Properties by Transcriptional Modulation of Genes in a Rat Model. Foods 2024; 13:3512. [PMID: 39517296 PMCID: PMC11545410 DOI: 10.3390/foods13213512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Hyperlipidemia is the root cause of numerous chronic conditions, leading to high mortality rates around the globe. Spirulina (Arthrospira platensis) microalgae serve as a promising reservoir of bioactive compounds with diverse pharmacological properties. The current study examined the nutritional profile of spirulina powder in relation to strict glycemic control, specifically focusing on its potential to lower lipid levels. In an in vivo investigation, normal healthy male Wistar albino rats (n = 60) were divided into two groups: a negative control group (NC) of ten rats and a high-fat diet group (n = 50) that were fed a cholesterol-rich diet until their cholesterol levels reached or exceeded 250 mg/dL. Subsequently, the hypercholesterolemic rats were then randomly allocated to several treatment groups: a positive control (PC); a standard treatment diet (STD) involving fenofibrate at a dose of 20 mg/kg body weight; and three experimental groups (T1, T2, and T3) that received spirulina powder supplementation at doses of 300, 600, and 900 mg per kg body weight, respectively, for the period of 12 weeks. Blood samples were analyzed for oxidative stress biomarkers, insulin levels, lipid profiles, liver function, and expression of gene levels in the diabetogenic pathway. The study utilized spectrophotometric colorimetric methods to identify oxidative stress biomarkers, serum kit methods to measure lipid profiles and liver enzymes, and the assessment of qPCR for mRNA quantity. According to the research findings, spirulina powder has certain noteworthy features. It had the greatest quantity of chlorogenic acid (4052.90 µg/g) among seven phenolics and two flavonoid compounds obtained by HPLC-UV analysis. Furthermore, the proximate analysis demonstrated that spirulina is high in protein (16.45 ± 0.8%) and has a significant energy yield of 269.51 K-calories per 100 g. A maximal spirulina dose of 900 mg/kg/wt significantly lowered oxidative stress, cholesterol, triglyceride, low-density lipoproteins (LDL), and insulin levels (p ≤ 0.05). In contrast, high-density lipoprotein (HDL) and total antioxidant capacity (TAC) levels increased significantly (p ≤ 0.05) compared to all other groups, except the NC group. The study provides remarkable proof about the pharmacological impact of spirulina powders. Significant reductions (p ≤ 0.05) in liver enzymes {alanine aminotransferase (ALT) and aspartate aminotransferase (AST)} were observed across all treatment groups, with the exception of the NC, compared to the positive control. The treatment groups had significantly greater gene expression levels of INS-1, PDX-1, IGF-1, and GLUT-2 than the positive control group (p ≤ 0.05). These findings highlight spirulina's potential as a long-term regulator of hyperglycemia in rat models with induced hyperlipidemia, owing to its phenolic bioactive components that serve as antioxidants.
Collapse
Affiliation(s)
- Anum Nazir
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Mahr un Nisa
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Abdul Rahim
- Department of Food Science & Nutrition, Faculty of Medicine and Allied Health Sciences, Times Institute, Multan 60700, Pakistan
| | - Isam A. Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Moneera O. Aljobair
- Department of Physical Sport Sciences, College of Sports Sciences & Physical Activity, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| |
Collapse
|
5
|
Nawaz L, Grieve DJ, Muzaffar H, Iftikhar A, Anwar H. Methanolic Extract of Phoenix Dactylifera Confers Protection against Experimental Diabetic Cardiomyopathy through Modulation of Glucolipid Metabolism and Cardiac Remodeling. Cells 2024; 13:1196. [PMID: 39056777 PMCID: PMC11274523 DOI: 10.3390/cells13141196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The incidence of cardiovascular disorders is continuously rising, and there are no effective drugs to treat diabetes-associated heart failure. Thus, there is an urgent need to explore alternate approaches, including natural plant extracts, which have been successfully exploited for therapeutic purposes. The current study aimed to explore the cardioprotective potential of Phoenix dactylifera (PD) extract in experimental diabetic cardiomyopathy (DCM). Following in vitro phytochemical analyses, Wistar albino rats (N = 16, male; age 2-3 weeks) were fed with a high-fat or standard diet prior to injection of streptozotocin (35 mg/kg i.p.) after 2 months and separation into the following four treatment groups: healthy control, DCM control, DCM metformin (200 mg/kg/day, as the reference control), and DCM PD treatment (5 mg/kg/day). After 25 days, glucolipid and myocardial blood and serum markers were assessed along with histopathology and gene expression of both heart and pancreatic tissues. The PD treatment improved glucolipid balance (FBG 110 ± 5.5 mg/dL; insulin 17 ± 3.4 ng/mL; total cholesterol 75 ± 8.5 mg/dL) and oxidative stress (TOS 50 ± 7.8 H2O2equiv./L) in the DCM rats, which was associated with preserved structural integrity of both the pancreas and heart compared to the DCM control (FBG 301 ± 10 mg/dL; insulin 27 ± 3.4 ng/mL; total cholesterol 126 ± 10 mg/dL; TOS 165 ± 12 H2O2equiv./L). Gene expression analyses revealed that PD treatment upregulated the expression of insulin signaling genes in pancreatic tissue (INS-I 1.69 ± 0.02; INS-II 1.3 ± 0.02) and downregulated profibrotic gene expression in ventricular tissue (TGF-β 1.49 ± 0.04) compared to the DCM control (INS-I 0.6 ± 0.02; INS-II 0.49 ± 0.03; TGF-β 5.7 ± 0.34). Taken together, these data indicate that Phoenix dactylifera may offer cardioprotection in DCM by regulating glucolipid balance and metabolic signaling.
Collapse
Affiliation(s)
- Laaraib Nawaz
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - David J. Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK;
| | - Humaira Muzaffar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - Arslan Iftikhar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| | - Haseeb Anwar
- Health Biology Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan; (L.N.); (H.M.); (A.I.)
| |
Collapse
|
6
|
Jin S, Chen P, Yang J, Li D, Liu X, Zhang Y, Xia Q, Li Y, Chen G, Li Y, Tong Y, Yu W, Fan X, Lin H. Phocaeicola vulgatus alleviates diet-induced metabolic dysfunction-associated steatotic liver disease progression by downregulating histone acetylation level via 3-HPAA. Gut Microbes 2024; 16:2309683. [PMID: 38312099 PMCID: PMC10854360 DOI: 10.1080/19490976.2024.2309683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Diet-induced metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent metabolic disorder with limited effective interventions available. A novel approach to address this issue is through gut microbiota-based therapy. In our study, we utilized multi-omics analysis to identify Phocaeicola vulgatus (P. vulgatus) as a potential probiotic for the treatment of MASLD. Our findings from murine models clearly illustrate that the supplementation of P. vulgatus mitigates the development of MASLD. This beneficial effect is partly attributed to the metabolite 3-Hydroxyphenylacetic acid (3-HPAA) produced by P. vulgatus, which reduces the acetylation levels of H3K27 and downregulates the transcription of Squalene Epoxidase (SQLE), a rate-limiting enzyme in steroid biosynthesis that promotes lipid accumulation in liver cells. This study underscores the significant role of P. vulgatus in the development of MASLD and the critical importance of its metabolite 3-HPAA in regulating lipid homeostasis. These findings offer a promising avenue for early intervention therapy in the context of MASLD.
Collapse
Affiliation(s)
- Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolong Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiling Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoqiao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixuan Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Tong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weihua Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Huang X, Huang J, Huang Q, Zhou S. A ten long noncoding RNA-based prognostic risk model construction and mechanism study in the basal-like immune-suppressed subtype of triple-negative breast cancer. Transl Cancer Res 2023; 12:3653-3671. [PMID: 38193005 PMCID: PMC10774046 DOI: 10.21037/tcr-23-147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/21/2023] [Indexed: 01/10/2024]
Abstract
Background According to the Fudan University Shanghai Cancer Center (FUSCC) system, triple-negative breast cancer (TNBC) is divided into four stable subtypes: (I) luminal androgen receptor, (II) immunomodulatory, (III) basal-like immune-suppressed (BLIS), and (IV) mesenchymal-like. However, the treatment outcomes of the corresponding targeted therapies are unsatisfactory, especially for the BLIS subtype. Therefore, we aimed to identify the key long noncoding RNAs (lncRNAs) to construct a prognostic model for BLIS subtype and discover potential targets to explore potential therapeutic strategies in this study. Methods The FUSCC cohort was used to establish a prognostic risk model via least absolute shrinkage and selection operator (LASSO) and Cox regression analysis. The Cancer Genome Atlas (TCGA) cohort was then used to evaluate and verify the model. To understand the functional aspects of the model, functional, immune landscape, mutation, and drug sensitivity analyses were performed between high- and low-risk groups. Results Ten prognostic-related lncRNAs identified, including C5ORF66-AS2, DIO3OS, FZD10-DT, LINC00393, LNC-ERI1-32, LNC-FOXO1-2, LNC-SPARCL1-1, HCG23, LNC-MMD-4 and LNC-TMEM106C-6, were selected for risk score system construction. The results showed that the model constructed could divide the patients with BLIS subtype into two groups of high and low risk, and patients with higher risk scores had shorter recurrence-free survival. In addition, drug sensitivity analysis identified 3 compounds, including BMS-754807, cytochalasin b, and linifanib, that could have a potential therapeutic effect on patients with the BLIS subtype. Conclusions The risk prognosis model showed good prognostic value for the BLIS subtype patients, and the ten lncRNAs may be potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaoying Huang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jinlong Huang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qiuyan Huang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shihao Zhou
- College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Garcia NA, Mellergaard M, Gonzalez-King H, Salomon C, Handberg A. Comprehensive Strategy for Identifying Extracellular Vesicle Surface Proteins as Biomarkers for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:13326. [PMID: 37686134 PMCID: PMC10487973 DOI: 10.3390/ijms241713326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder that has become a global health concern due to its increasing prevalence. There is a need for reliable biomarkers to aid in the diagnosis and prognosis of NAFLD. Extracellular vesicles (EVs) are promising candidates in biomarker discovery, as they carry proteins that reflect the pathophysiological state of the liver. In this review, we developed a list of EV proteins that could be used as diagnostic biomarkers for NAFLD. We employed a multi-step strategy that involved reviewing and comparing various sources of information. Firstly, we reviewed papers that have studied EVs proteins as biomarkers in NAFLD and papers that have studied circulating proteins as biomarkers in NAFLD. To further identify potential candidates, we utilized the EV database Vesiclepedia.org to qualify each protein. Finally, we consulted the Human Protein Atlas to search for candidates' localization, focusing on membrane proteins. By integrating these sources of information, we developed a comprehensive list of potential EVs membrane protein biomarkers that could aid in diagnosing and monitoring NAFLD. In conclusion, our multi-step strategy for identifying EV-based protein biomarkers for NAFLD provides a comprehensive approach that can also be applied to other diseases. The protein candidates identified through this approach could have significant implications for the development of non-invasive diagnostic tests for NAFLD and improve the management and treatment of this prevalent liver disorder.
Collapse
Affiliation(s)
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Hernan Gonzalez-King
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland, Brisbane, QLD 4029, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| |
Collapse
|
9
|
Zeng Q, Liu CH, Wu D, Jiang W, Zhang N, Tang H. LncRNA and circRNA in Patients with Non-Alcoholic Fatty Liver Disease: A Systematic Review. Biomolecules 2023; 13:biom13030560. [PMID: 36979495 PMCID: PMC10046118 DOI: 10.3390/biom13030560] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common cause of chronic liver disease worldwide. Early identification and prompt treatment are critical to optimize patient management and improve long-term prognosis. Long non-coding RNA (lncRNA) and circular RNA (circRNA) are recently emerging non-coding RNAs, and are highly stable and easily detected in the circulation, representing a promising non-invasive approach for predicting NAFLD. A literature search of the Pubmed, Embase, Web of Science, and Cochrane Library databases was performed and 36 eligible studies were retrieved, including 18 on NAFLD, 13 on nonalcoholic steatohepatitis (NASH), and 11 on fibrosis and/or cirrhosis. Dynamic changes in lncRNA expression were associated with the occurrence and progression of NAFLD, among which lncRNA NEAT1, MEG3, and MALAT1 exhibited great potential as biomarkers for NAFLD. Moreover, mitochondria-located circRNA SCAR can drive metaflammation and its inhibition might be a promising therapeutic target for NASH. In this systematic review, we highlight the great potential of lncRNA/circRNA for early diagnosis and progression assessment of NAFLD. To further verify their clinical value, large-cohort studies incorporating lncRNA and circRNA expression both in liver tissue and blood should be conducted. Additionally, detailed studies on the functional mechanisms of NEAT1, MEG3, and MALAT1 will be essential for elucidating their roles in diagnosing and treating NAFLD, NASH, and fibrosis.
Collapse
Affiliation(s)
- Qingmin Zeng
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nannan Zhang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Albadawy R, Hasanin AH, Agwa SHA, Hamady S, Mohamed RH, Gomaa E, Othman M, Yahia YA, Ghani AMA, Matboli M. Prospective insight into the role of benzyl propylene glycoside as a modulator of the cGAS-STING signaling pathway in the management of nonalcoholic fatty pancreas animal model. Biol Res 2023; 56:11. [PMID: 36915161 PMCID: PMC10010022 DOI: 10.1186/s40659-023-00423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty pancreatitis (NAFP) is one of the metabolic syndrome manifestations that need further studies to determine its molecular determinants and find effective medications. We aimed to investigate the potential effect of benzyl propylene glycoside on NAFP management via targeting the pancreatic cGAS-STING pathway-related genes (DDX58, NFκB1 & CHUK) and their upstream regulator miRNA (miR-1976) that were retrieved from bioinformatics analysis. METHODS The rats were fed either normal chow or a high-fat high-sucrose diet (HFHS), as a nutritional model for NAFP. After 8 weeks, the HFHS-fed rats were subdivided randomly into 4 groups; untreated HFHS group (NAFP model group) and three treated groups which received 3 doses of benzyl propylene glycoside (10, 20, and 30 mg/kg) daily for 4 weeks, parallel with HFHS feeding. RESULTS The molecular analysis revealed that benzyl propylene glycoside could modulate the expression of the pancreatic cGAS-STING pathway-related through the downregulation of the expression of DDX58, NFκB1, and CHUK mRNAs and upregulation of miR-1976 expression. Moreover, the applied treatment reversed insulin resistance, inflammation, and fibrosis observed in the untreated NAFP group, as evidenced by improved lipid panel, decreased body weight and the serum level of lipase and amylase, reduced protein levels of NFκB1 and caspase-3 with a significant reduction in area % of collagen fibers in the pancreatic sections of treated animals. CONCLUSION benzyl propylene glycoside showed a potential ability to attenuate NAFP development, inhibit pancreatic inflammation and fibrosis and reduce the pathological and metabolic disturbances monitored in the applied NAFP animal model. The detected effect was correlated with modulation of the expression of pancreatic (DDX58, NFκB1, and CHUK mRNAs and miR-1976) panel.
Collapse
Affiliation(s)
- Reda Albadawy
- Department of Gastroenterology, Hepatology & Infectious Disease, Faculty of Medicine, Benha University, Benha, 13518 Egypt
| | - Amany Helmy Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sara H. A. Agwa
- Clinical Pathology and Molecular Genomics Unit, Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, 11382 Egypt
| | - Shaimaa Hamady
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566 Egypt
| | - Reham Hussein Mohamed
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman Gomaa
- Histology and Cell Biology Department, Faculty of Medicine, Ain Shams University, Giza, Egypt
| | - Mohamed Othman
- Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030 USA
| | - Yahia A. Yahia
- Chemistry Department, School of Science and Engineering, American University in Cairo, New Cairo, 11835 Egypt
- Biochemistry Department, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | | | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, 11566 Egypt
| |
Collapse
|
11
|
Noncoding RNAs Associated with PPARs in Etiology of MAFLD as a Novel Approach for Therapeutics Targets. PPAR Res 2022; 2022:6161694. [PMID: 36164476 PMCID: PMC9509273 DOI: 10.1155/2022/6161694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/25/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Metabolic associated fatty liver disease (MAFLD) is a complex disease that results from the accumulation of fat in the liver. MAFLD is directly associated with obesity, insulin resistance, diabetes, and metabolic syndrome. PPARγ ligands, including pioglitazone, are also used in the management of this disease. Noncoding RNAs play a critical role in various diseases such as diabetes, obesity, and liver diseases including MAFLD. However, there is no adequate knowledge about the translation of using these ncRNAs to the clinics, particularly in MAFLD conditions. The aim of this study was to identify ncRNAs in the etiology of MAFLD as a novel approach to the therapeutic targets. Methods. We collected human and mouse MAFLD gene expression datasets available in GEO. We performed pathway enrichment analysis of total mRNAs based on KEGG repository data to screen the most potential pathways in the liver of MAFLD human subjects and mice model, and analyzed pathway interconnections via ClueGO. Finally, we screened disease causality of the MAFLD ncRNAs, which were associated with PPARs, and then discussed the role of revealed ncRNAs in PPAR signaling and MAFLD. Results. We found 127 ncRNAs in MAFLD which 25 out of them were strongly validated before for regulation of PPARs. With a polypharmacology approach, we screened 51 ncRNAs which were causal to a subset of diseases related to MAFLD. Conclusion. This study revealed a subset of ncRNAs that could help in more clear and guided designation of preclinical and clinical studies to verify the therapeutic application of the revealed ncRNAs by manipulating the PPARs molecular mechanism in MAFLD.
Collapse
|
12
|
Albadawy R, Hasanin AH, Agwa SHA, Hamady S, Aboul-Ela YM, Raafat MH, Kamar SS, Othman M, Yahia YA, Matboli M. Rosavin Ameliorates Hepatic Inflammation and Fibrosis in the NASH Rat Model via Targeting Hepatic Cell Death. Int J Mol Sci 2022; 23:10148. [PMID: 36077546 PMCID: PMC9456245 DOI: 10.3390/ijms231710148] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) represents the most common form of chronic liver disease that urgently needs effective therapy. Rosavin, a major constituent of the Rhodiola Rosea plant of the family Crassulaceae, is believed to exhibit multiple pharmacological effects on diverse diseases. However, its effect on non-alcoholic steatohepatitis (NASH), the progressive form of NAFLD, and the underlying mechanisms are not fully illustrated. AIM Investigate the pharmacological activity and potential mechanism of rosavin treatment on NASH management via targeting hepatic cell death-related (HSPD1/TNF/MMP14/ITGB1) mRNAs and their upstream noncoding RNA regulators (miRNA-6881-5P and lnc-SPARCL1-1:2) in NASH rats. RESULTS High sucrose high fat (HSHF) diet-induced NASH rats were treated with different concentrations of rosavin (10, 20, and 30 mg/kg/day) for the last four weeks of dietary manipulation. The data revealed that rosavin had the ability to modulate the expression of the hepatic cell death-related RNA panel through the upregulation of both (HSPD1/TNF/MMP14/ITGB1) mRNAs and their epigenetic regulators (miRNA-6881-5P and lnc-SPARCL1-1:2). Moreover, rosavin ameliorated the deterioration in both liver functions and lipid profile, and thereby improved the hepatic inflammation, fibrosis, and apoptosis, as evidenced by the decreased protein levels of IL6, TNF-α, and caspase-3 in liver sections of treated animals compared to the untreated NASH rats. CONCLUSION Rosavin has demonstrated a potential ability to attenuate disease progression and inhibit hepatic cell death in the NASH animal model. The produced effect was correlated with upregulation of the hepatic cell death-related (HSPD1, TNF, MMP14, and ITGB1) mRNAs-(miRNA-6881-5P-(lnc-SPARCL1-1:2) RNA panel.
Collapse
Affiliation(s)
- Reda Albadawy
- Department of Gastroenterology, Hepatology & Infectious Disease, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Amany Helmy Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Sara H. A. Agwa
- Clinical Pathology and Molecular Genomics Unit, Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo 11382, Egypt
| | - Shaimaa Hamady
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Yasmin M. Aboul-Ela
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Mona Hussien Raafat
- Histology and Cell Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Samaa Samir Kamar
- Histology and Cell Biology Department, Kasralainy Faculty of Medicine, Cairo University, Giza 12613, Egypt
| | - Mohamed Othman
- Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yahia A. Yahia
- Biochemistry Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12566, Egypt or
- Chemistry Department, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
13
|
Javid H, Hashemian P, Yazdani S, Sharbaf Mashhad A, Karimi-Shahri M. The role of heat shock proteins in metastatic colorectal cancer: A review. J Cell Biochem 2022; 123:1704-1735. [PMID: 36063530 DOI: 10.1002/jcb.30326] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
Heat shock proteins (HSPs) are a large molecular chaperone family classified by their molecular weights, including HSP27, HSP40, HSP60, HSP70, HSP90, and HSP110. HSPs are likely to have antiapoptotic properties and participate actively in various processes such as tumor cell proliferation, invasion, metastases, and death. In this review, we discuss comprehensively the functions of HSPs associated with the progression of colorectal cancer (CRC) and metastasis and resistance to cancer therapy. Taken together, HSPs have numerous clinical applications as biomarkers for cancer diagnosis and prognosis and potential therapeutic targets for CRC and its related metastases.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Shaghayegh Yazdani
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Sharbaf Mashhad
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
14
|
NAFLD: From Mechanisms to Therapeutic Approaches. Biomedicines 2022; 10:biomedicines10071747. [PMID: 35885052 PMCID: PMC9313291 DOI: 10.3390/biomedicines10071747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) now represents the most frequent chronic liver disease worldwide [...]
Collapse
|
15
|
Dorairaj V, Sulaiman SA, Abu N, Abdul Murad NA. Nonalcoholic Fatty Liver Disease (NAFLD): Pathogenesis and Noninvasive Diagnosis. Biomedicines 2021; 10:15. [PMID: 35052690 PMCID: PMC8773432 DOI: 10.3390/biomedicines10010015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) or metabolic associated fatty liver disease (MAFLD), as it is now known, has gradually increased. NAFLD is a disease with a spectrum of stages ranging from simple fatty liver (steatosis) to a severe form of steatosis, nonalcoholic steatohepatitis (NASH), which could progress to irreversible liver injury (fibrosis) and organ failure, and in some cases hepatocellular carcinoma (HCC). Although a liver biopsy remains the gold standard for accurate detection of this condition, it is unsuitable for clinical screening due to a higher risk of death. There is thus an increased need to find alternative techniques or tools for accurate diagnosis. Early detection for NASH matters for patients because NASH is the marker for severe disease progression. This review summarizes the current noninvasive tools for NAFLD diagnosis and their performance. We also discussed potential and newer alternative tools for diagnosing NAFLD.
Collapse
Affiliation(s)
| | - Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (V.D.); (N.A.); (N.A.A.M.)
| | | | | |
Collapse
|