1
|
Chen H, Ling R, Lai J, Liu Z, Wang Z, Yang H, Kong Y. CD44v6-mediated regulation of gastric cancer stem cells: a potential therapeutic target. Clin Exp Med 2025; 25:80. [PMID: 40069421 PMCID: PMC11897096 DOI: 10.1007/s10238-025-01611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Gastric cancer is the fourth most common cause of cancer-related deaths globally. Cancer stem cells (CSCs) play an essential role in tumor initiation, development, and chemoresistance. However, the molecular mechanisms that regulate CSC traits in gastric cancer, particularly the role of CD44v6 as a key CSC marker, remain poorly understood. Here, we demonstrate that CD44v6 is markedly upregulated in gastric cancer tissues and correlates with poor prognosis. Functional assays, including colony formation, wound healing, proliferation, and apoptosis assays, show that CD44v6 enhances CSC characteristics, such as self-renewal, proliferation, migration, and cisplatin chemoresistance. CD44v6 knockdown effectively suppresses these aggressive phenotypes. Mechanistically, CD44v6 regulates the expression of key CSC markers, including CD24, CD133, EpCAM, as well as stemness-related transcription factors Oct-4 and Nanog. Additionally, CD44v6 enhances cell proliferation and drug resistance in both in vitro and in vivo experiments. Collectively, our findings highlight the significant role of CD44v6 in regulating gastric CSC traits, suggesting it's a potential as a biomarker and therapeutic target for improving gastric cancer treatment outcomes, particularly in overcoming chemoresistance.
Collapse
Affiliation(s)
- Hao Chen
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Ruoyu Ling
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Jiayu Lai
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Zhiqi Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong Province, China.
| | - Hua Yang
- Department of Basic Medicine, School of Medicine, Foshan University, Foshan, 528225, Guangdong Province, China.
| | - Yi Kong
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, 518107, Guangdong Province, China.
| |
Collapse
|
2
|
Liu J, Han X, Wang Q, Qin S, Xi Y, Liang G. Hotspots and trends in gastric cancer stem cell research: a visualization and bibliometric analysis. Front Oncol 2025; 15:1523465. [PMID: 40110193 PMCID: PMC11919667 DOI: 10.3389/fonc.2025.1523465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Background Gastric cancer (GC) is a type of malignant tumor that seriously endangers human health. As the understanding of the mechanisms underlying gastric cancer deepens, in recent years, investigations on gastric cancer stem cells (GCSCs) have garnered significant interest. They are pivotal in the onset, progression, recurrence, and pharmacoresistance of GC. Comprehensive research on GCSCs is expected to provide new strategies for the diagnosis and treatment of GC. This article endeavors to comprehensively assess the current status and future trends of GCSCs research through bibliometric analysis, thereby providing a valuable reference for further in - depth studies in this field. Methods English - language academic journals related to GCSCs research in the Web of Science database were retrieved. Subsequently, VOSviewer was utilized to conduct network collinear analysis of the exported source institutions, literature authors, references, and keywords. And CiteSpace was used to perform statistical analysis of the annual publication count, keyword clustering, references, and keyword burst. Results A total of 3882 documents that met the criteria were incorporated. The quantity of published papers has shown a consistent upward trend annually since 2003. Among the authors of the literature, multiple stable core author groups represented by Zhu, Wei, Wang, Mei, Xu, Wenrong, etc. have been formed. There are 335 associated institutions in total. The Japan National Cancer Center has the strongest relevance and the largest number of published papers. There are 7 clustering labels formed among the keywords, including main clustering modules such as activation, cancer stem cells, DNA content aneuploidy, and expression. 25 burst keywords were generated, and the burst keywords in the past two years include mesenchymal stem cells, drug resistance, proliferation, etc. The emergence of references indicates that eight references have been cited up to now and are the focus of current research. Conclusion The research overview of GCSCs in the past 30 years was visually presented by visual maps. In the past decade, scholars' research in this field has gradually intensified, and the development trend is good. Through the deeper study of the GCSCs mechanism, intervention GCSCs in the future will be a new promising treatment approach for GC patients. This hot topic still deserves more attention in the future.
Collapse
Affiliation(s)
- Jinfeng Liu
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinhui Han
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qingyi Wang
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Sihui Qin
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yujie Xi
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guoying Liang
- Department of Gastroenterology 1, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Numakura S, Kato M, Uozaki H. Discovery of YS-1 as a cell line of gastric inflammatory cancer-associated fibroblasts. Mol Biol Rep 2024; 51:542. [PMID: 38642200 DOI: 10.1007/s11033-024-09442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/12/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Inflammatory cancer-associated fibroblasts (iCAFs) was first identified by co-culture of pancreatic stellate cells and tumor organoids. The key feature of iCAFs is IL-6high/αSMAlow. We examine this phenomenon in gastric cancer using two cell lines of gastric fibroblasts (HGF and YS-1). METHODS AND RESULTS HGF or YS-1 were co-cultured with MKN7 (a gastric adenocarcinoma cell line) in Matrigel. IL-6 protein levels in the culture supernatant were measured by ELISA. The increased production of IL-6 was not observed in any of the combinations. Instead, the supernatant of YS-1 exhibited the higher levels of IL-6. YS-1 showed IL-6high/αSMA (ACTA2)low in real-time PCR, mRNA-seq and immunohistochemistry. In mRNA-seq, iCAFs-associated genes and signaling pathways were up-regulated in YS-1. No transition to myofibroblastic phenotype was observed by monolayer culture, or the exposure to sonic hedgehog (SHH) or TGF-β. YS-1 conditioned medium induced changes of morphology and stem-ness/differentiation in NUGC-3 (a human gastric adenocarcinoma cell line) and UBE6T-15 (a human bone marrow-derived mesenchymal stem cell line). CONCLUSIONS YS-1 is a stable cell line of gastric iCAFs. This discovery will promote further research on iCAFs for many researchers.
Collapse
Affiliation(s)
- Satoe Numakura
- Department of Pathology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Masahiro Kato
- Department of Pathology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Hiroshi Uozaki
- Department of Pathology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
4
|
Ciulean IS, Fischer J, Quaiser A, Bach C, Abken H, Tretbar US, Fricke S, Koehl U, Schmiedel D, Grunwald T. CD44v6 specific CAR-NK cells for targeted immunotherapy of head and neck squamous cell carcinoma. Front Immunol 2023; 14:1290488. [PMID: 38022580 PMCID: PMC10667728 DOI: 10.3389/fimmu.2023.1290488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major challenge for current therapies. CAR-T cells have shown promising results in blood cancers, however, their effectiveness against solid tumors remains a hurdle. Recently, CD44v6-directed CAR-T cells demonstrated efficacy in controlling tumor growth in multiple myeloma and solid tumors such as HNSCC, lung and ovarian adenocarcinomas. Apart from CAR-T cells, CAR-NK cells offer a safe and allogenic alternative to autologous CAR-T cell therapy. In this paper, we investigated the capacity of CAR-NK cells redirected against CD44v6 to execute cytotoxicity against HNSCC. Anti-CD44v6 CAR-NK cells were generated from healthy donor peripheral blood-derived NK cells using gamma retroviral vectors (gRVs). The NK cell transduction was optimized by exploring virus envelope proteins derived from the baboon endogenous virus envelope (BaEV), feline leukemia virus (FeLV, termed RD114-TR) and gibbon ape leukemia virus (GaLV), respectively. BaEV pseudotyped gRVs induced the highest transduction rate compared to RD114-TR and GaLV envelopes as measured by EGFP and surface CAR expression of transduced NK cells. CAR-NK cells showed a two- to threefold increase in killing efficacy against various HNSCC cell lines compared to unmodified, cytokine-expanded primary NK cells. Anti-CD44v6 CAR-NK cells were effective in eliminating tumor cell lines with high and low CD44v6 expression levels. Overall, the improved cytotoxicity of CAR-NK cells holds promise for a therapeutic option for the treatment of HNSCC. However, further preclinical trials are necessary to test in vivo efficacy and safety, as well to optimize the treatment regimen of anti-CD44v6 CAR-NK cells against solid tumors.
Collapse
Affiliation(s)
- Ioana Sonya Ciulean
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Joe Fischer
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Andrea Quaiser
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Christoph Bach
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Regensburg, Germany
| | - Uta Sandy Tretbar
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Dominik Schmiedel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| |
Collapse
|
5
|
Lodewijk I, Dueñas M, Paramio JM, Rubio C. CD44v6, STn & O-GD2: promising tumor associated antigens paving the way for new targeted cancer therapies. Front Immunol 2023; 14:1272681. [PMID: 37854601 PMCID: PMC10579806 DOI: 10.3389/fimmu.2023.1272681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Targeted therapies are the state of the art in oncology today, and every year new Tumor-associated antigens (TAAs) are developed for preclinical research and clinical trials, but few of them really change the therapeutic scenario. Difficulties, either to find antigens that are solely expressed in tumors or the generation of good binders to these antigens, represent a major bottleneck. Specialized cellular mechanisms, such as differential splicing and glycosylation processes, are a good source of neo-antigen expression. Changes in these processes generate surface proteins that, instead of showing decreased or increased antigen expression driven by enhanced mRNA processing, are aberrant in nature and therefore more specific targets to elicit a precise anti-tumor therapy. Here, we present promising TAAs demonstrated to be potential targets for cancer monitoring, targeted therapy and the generation of new immunotherapy tools, such as recombinant antibodies and chimeric antigen receptor (CAR) T cell (CAR-T) or Chimeric Antigen Receptor-Engineered Natural Killer (CAR-NK) for specific tumor killing, in a wide variety of tumor types. Specifically, this review is a detailed update on TAAs CD44v6, STn and O-GD2, describing their origin as well as their current and potential use as disease biomarker and therapeutic target in a diversity of tumor types.
Collapse
Affiliation(s)
- Iris Lodewijk
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Marta Dueñas
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Jesus M. Paramio
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Carolina Rubio
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| |
Collapse
|
6
|
Yang L, Yang J, Jacobson B, Gilbertsen A, Smith K, Higgins L, Guerrero C, Xia H, Henke CA, Lin J. SFPQ Promotes Lung Cancer Malignancy via Regulation of CD44 v6 Expression. Front Oncol 2022; 12:862250. [PMID: 35707369 PMCID: PMC9190464 DOI: 10.3389/fonc.2022.862250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) contribute to tumor pathogenesis and elicit antitumor immune responses in tumor microenvironments. Nuclear proteins might be the main players in these processes. In the current study, combining spatial proteomics with ingenuity pathway analysis (IPA) in lung non-small cell (NSC) cancer MSCs, we identify a key nuclear protein regulator, SFPQ (Splicing Factor Proline and Glutamine Rich), which is overexpressed in lung cancer MSCs and functions to promote MSCs proliferation, chemical resistance, and invasion. Mechanistically, the knockdown of SFPQ reduces CD44v6 expression to inhibit lung cancer MSCs stemness, proliferation in vitro, and metastasis in vivo. The data indicates that SFPQ may be a potential therapeutic target for limiting growth, chemotherapy resistance, and metastasis of lung cancer.
Collapse
Affiliation(s)
- Libang Yang
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minneapolis, Minneapolis, MN, United States.,The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Blake Jacobson
- Hematology, Oncology and Transplantation, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Adam Gilbertsen
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - LeeAnn Higgins
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN, United States
| | - Candace Guerrero
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN, United States
| | - Hong Xia
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Craig A Henke
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jizhen Lin
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China.,The Immunotherapy Research Laboratory, Department of Otolaryngology, Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|