1
|
Xiao J, Li W, Tan G, Gao R. The gene signature linked to lactate metabolism predicts the prognosis and correlates with the immune status of head and neck squamous cell carcinoma. Front Genet 2025; 16:1540841. [PMID: 40255484 PMCID: PMC12006151 DOI: 10.3389/fgene.2025.1540841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/05/2025] [Indexed: 04/22/2025] Open
Abstract
Lactate, traditionally viewed as a byproduct of glycolysis, is increasingly recognized as a pivotal regulatory factor in cancer biology. This study addresses the limited understanding of lactate metabolism-related genes in head and neck squamous cell carcinoma (HNSC) by constructing a prognostic risk model centered on these genes to enhance prediction and treatment strategies for HNSC. Utilizing the Lactate Metabolism score (LMs) derived from The Cancer Genome Atlas (TCGA), we identified five key genes significantly associated with prognosis in HNSC patients. These genes were integrated into a prognostic risk model developed through Cox regression analysis, which demonstrated superior predictive performance, achieving area under the curve (AUC) values greater than 0.8 for five-year survival. The risk scores generated by our model were significantly correlated with critical features of the tumor microenvironment, including immune characteristics and markers of immune evasion. Higher risk scores correlated with a more tumor-promoting microenvironment and increased immune suppression, underscoring the model's relevance in understanding HNSC progression. Additionally, eight critical hub genes were identified, revealing significant differences in gene expression between risk score groups. Functional analyses demonstrated that the low-risk group exhibited a more favorable prognosis and enhanced immune characteristics. Our findings suggest that the lactate metabolism-based prognostic model may have implications for guiding the development of personalized treatment approaches, as it highlights the potential for targeted interventions that could modulate the tumor microenvironment and immune response.
Collapse
|
2
|
Zhang M, Liu C, Li Y, Li H, Zhang W, Liu J, Wang L, Sun C. Galectin-9 in cancer therapy: from immune checkpoint ligand to promising therapeutic target. Front Cell Dev Biol 2024; 11:1332205. [PMID: 38264357 PMCID: PMC10803597 DOI: 10.3389/fcell.2023.1332205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Galectin-9 (Gal-9) is a vital member of the galectin family, functioning as a multi-subtype galactose lectin with diverse biological roles. Recent research has revealed that Gal-9's interaction with tumors is an independent factor that influences tumor progression. Furthermore, Gal-9 in the immune microenvironment cross-talks with tumor-associated immune cells, informing the clarification of Gal-9's identity as an immune checkpoint. A thorough investigation into Gal-9's role in various cancer types and its interaction with the immune microenvironment could yield novel strategies for subsequent targeted immunotherapy. This review focuses on the latest advances in understanding the direct and indirect cross-talk between Gal-9 and hematologic malignancies, in addition to solid tumors. In addition, we discuss the prospects of Gal-9 in tumor immunotherapy, including its cross-talk with the ligand TIM-3 and its potential in immune-combination therapy.
Collapse
Affiliation(s)
- Minpu Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Wenfeng Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Liquan Wang
- Department of Thyroid and Breast Surgery, Weifang People’s Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
3
|
Asparuhova MB, Song X, Riedwyl D, van Geest G, Bosshardt DD, Sculean A. Differential molecular profiles and associated functionalities characterize connective tissue grafts obtained at different locations and depths in the human palate. Int J Oral Sci 2023; 15:57. [PMID: 38072943 PMCID: PMC10711016 DOI: 10.1038/s41368-023-00260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
The present study aimed to assess the molecular profiles of subepithelial connective tissue grafts (CTGs) obtained at different locations and depths in the human palate. Sixty-four CTGs belonging to anterior deep (AD), anterior superficial (AS), posterior deep (PD), and posterior superficial (PS) groups were subjected to RNA-Sequencing and their transcriptomes were analyzed computationally. Functional correlations characterizing the CTG groups were validated by cell biological experiments using primary human palatal fibroblasts (HPFs) extracted from the CTGs. A clearly more pronounced location-dependent than depth-dependent difference between the grafts, with a minimal number of genes (4) showing no dependence on the location, was revealed. Epithelial, endothelial, and monocytic cell migration was strongly (P < 0.001) potentiated by AD- and PS-HPFs. Moreover, significantly increased expression of genes encoding C-C and C-X-C motif chemokine ligands as well as significantly (P < 0.01) activated p38 signaling suggested immunomodulatory phenotype for AD- and PS-HPFs. Increased growth factor gene expression and significantly activated (P < 0.001) Erk and Akt signaling in HPFs originating from A-CTGs implied their involvement in cell survival, proliferation, and motility. Prominent collagen-rich expression profile contributing to high mechanical stability, increased osteogenesis-related gene expression, and strongly activated (P < 0.001) Smad1/5/8 signaling characterized HPFs originating from P-CTGs. The present data indicate that in humans, differences between palatal CTGs harvested from different locations and depths appear to be location- rather than depth-dependent. Our findings provide the basis for future personalization of the therapeutic strategy by selecting an optimal graft type depending on the clinical indications.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - Xiaoqing Song
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Dominic Riedwyl
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Geert van Geest
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Dieter D Bosshardt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Chatterjee P, Karn R, Isaac AE, Ray S. Unveiling the vulnerabilities of synthetic lethality in triple-negative breast cancer. Clin Transl Oncol 2023; 25:3057-3072. [PMID: 37079210 DOI: 10.1007/s12094-023-03191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most invasive molecular subtype of breast cancer (BC), accounting for about nearly 15% of all BC cases reported annually. The absence of the three major BC hormone receptors, Estrogen (ER), Progesterone (PR), and Human Epidermal Growth Factor 2 (HER2) receptor, accounts for the characteristic "Triple negative" phraseology. The absence of these marked receptors makes this cancer insensitive to classical endocrine therapeutic approaches. Hence, the available treatment options remain solemnly limited to only conventional realms of chemotherapy and radiation therapy. Moreover, these therapeutic regimes are often accompanied by numerous treatment side-effects that account for early distant metastasis, relapse, and shorter overall survival in TNBC patients. The rigorous ongoing research in the field of clinical oncology has identified certain gene-based selective tumor-targeting susceptibilities, which are known to account for the molecular fallacies and mutation-based genetic alterations that develop the progression of TNBC. One such promising approach is synthetic lethality, which identifies novel drug targets of cancer, from undruggable oncogenes or tumor-suppressor genes, which cannot be otherwise clasped by the conventional approaches of mutational analysis. Herein, a holistic scientific review is presented, to undermine the mechanisms of synthetic lethal (SL) interactions in TNBC, the epigenetic crosstalks encountered, the role of Poly (ADP-ribose) polymerase inhibitors (PARPi) in inducing SL interactions, and the limitations faced by the lethal interactors. Thus, the future predicament of synthetic lethal interactions in the advancement of modern translational TNBC research is assessed with specific emphasis on patient-specific personalized medicine.
Collapse
Affiliation(s)
| | - Rohit Karn
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Arnold Emerson Isaac
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Smita Ray
- Department of Botany, Bethune College, Kolkata, West Bengal, 700006, India.
| |
Collapse
|
5
|
Bai Y, Zhao F, Wu T, Chen F, Pang X. Actin polymerization and depolymerization in developing vertebrates. Front Physiol 2023; 14:1213668. [PMID: 37745245 PMCID: PMC10515290 DOI: 10.3389/fphys.2023.1213668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Development is a complex process that occurs throughout the life cycle. F-actin, a major component of the cytoskeleton, is essential for the morphogenesis of tissues and organs during development. F-actin is formed by the polymerization of G-actin, and the dynamic balance of polymerization and depolymerization ensures proper cellular function. Disruption of this balance results in various abnormalities and defects or even embryonic lethality. Here, we reviewed recent findings on the structure of G-actin and F-actin and the polymerization of G-actin to F-actin. We also focused on the functions of actin isoforms and the underlying mechanisms of actin polymerization/depolymerization in cellular and organic morphogenesis during development. This information will extend our understanding of the role of actin polymerization in the physiologic or pathologic processes during development and may open new avenues for developing therapeutics for embryonic developmental abnormalities or tissue regeneration.
Collapse
Affiliation(s)
- Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Feng Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
6
|
Current Progress of EMT: A New Direction of Targeted Therapy for Colorectal Cancer with Invasion and Metastasis. Biomolecules 2022; 12:biom12121723. [PMID: 36551152 PMCID: PMC9775097 DOI: 10.3390/biom12121723] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/23/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor with a high frequency of recurrence and metastasis, which are the major causes of death in patients. The prerequisite for the invasion and metastasis is the strong mobility of CRC cells to transport far away from the original site to the distant organs and tissues, where they settle down and proliferate. It was reported that the epithelial-mesenchymal transition (EMT) is involved in the occurrence and development of various tumors in the entire process of tumor invasion and metastasis. Therefore, as a vital factor for the biological characteristics of tumor cells, EMT markers may serve as prognostic predictors and potential therapeutic targets in CRC. This article mainly reviews the current status of CRC with metastasis, the studies of EMT, the possible relationship of EMT with CRC, as well as the potential targeted therapy.
Collapse
|
7
|
FOXM1-CD44 Signaling Is Critical for the Acquisition of Regorafenib Resistance in Human Liver Cancer Cells. Int J Mol Sci 2022; 23:ijms23147782. [PMID: 35887129 PMCID: PMC9324640 DOI: 10.3390/ijms23147782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/21/2022] Open
Abstract
Regorafenib is a multikinase inhibitor that was approved by the US Food and Drug administration in 2017. Cancer stem cells (CSCs) are a small subset of cancer-initiating cells that are thought to contribute to therapeutic resistance. The forkhead box protein M1 (FOXM1) plays an important role in the regulation of the stemness of CSCs and mediates resistance to chemotherapy. However, the relationship between FOXM1 and regorafenib resistance in liver cancer cells remains unknown. We found that regorafenib-resistant HepG2 clones overexpressed FOXM1 and various markers of CSCs. Patients with hepatocellular carcinoma also exhibited an upregulation of FOXM1 and resistance to regorafenib, which were correlated with a poor survival rate. We identified a close relationship between FOXM1 expression and regorafenib resistance, which was correlated with the survival of patients with hepatocellular carcinoma. Thus, a strategy that antagonizes FOXM1–CD44 signaling would enhance the therapeutic efficacy of regorafenib in these patients.
Collapse
|
8
|
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol 2022; 237:2770-2795. [PMID: 35561232 DOI: 10.1002/jcp.30759] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-β, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Bassiri
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Rasoul Raesi
- PhD in Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
EMT, Stemness, and Drug Resistance in Biological Context: A 3D Tumor Tissue/In Silico Platform for Analysis of Combinatorial Treatment in NSCLC with Aggressive KRAS-Biomarker Signatures. Cancers (Basel) 2022; 14:cancers14092176. [PMID: 35565305 PMCID: PMC9099837 DOI: 10.3390/cancers14092176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The phenotypic transition of tumor cells from epithelial to mesenchymal characteristics is called EMT and is widely discussed in the scientific community as a game changer in drug resistance and metastasis formation. However, clinical studies could not prove the efficacy of EMT-interfering treatments, and in clinical routine, EMT is not investigated to assess invasion. To fill this gap between bench and bedside, we use in this study a lung tumor tissue model with a preserved basement membrane for investigation of EMT functions with respect to invasion across this membrane and drug resistance. Our results suggest EMT is more a marker of drug resistance than a maker. Invasion is enhanced by EMT but more dependent on intrinsic factors, and EMT is not detected in the center of invasive tumor nodules. An in silico signaling network model is used to integrate these in vitro results and to reveal determinants for drug response. Abstract Epithelial-to-mesenchymal transition (EMT) is discussed to be centrally involved in invasion, stemness, and drug resistance. Experimental models to evaluate this process in its biological complexity are limited. To shed light on EMT impact and test drug response more reliably, we use a lung tumor test system based on a decellularized intestinal matrix showing more in vivo-like proliferation levels and enhanced expression of clinical markers and carcinogenesis-related genes. In our models, we found evidence for a correlation of EMT with drug resistance in primary and secondary resistant cells harboring KRASG12C or EGFR mutations, which was simulated in silico based on an optimized signaling network topology. Notably, drug resistance did not correlate with EMT status in KRAS-mutated patient-derived xenograft (PDX) cell lines, and drug efficacy was not affected by EMT induction via TGF-β. To investigate further determinants of drug response, we tested several drugs in combination with a KRASG12C inhibitor in KRASG12C mutant HCC44 models, which, besides EMT, display mutations in P53, LKB1, KEAP1, and high c-MYC expression. We identified an aurora-kinase A (AURKA) inhibitor as the most promising candidate. In our network, AURKA is a centrally linked hub to EMT, proliferation, apoptosis, LKB1, and c-MYC. This exemplifies our systemic analysis approach for clinical translation of biomarker signatures.
Collapse
|
10
|
Nakamura N, Fujihara H, Kawaguchi K, Yamada H, Nakayama R, Yasukawa M, Kishi Y, Hamada Y, Masutani M. Possible Action of Olaparib for Preventing Invasion of Oral Squamous Cell Carcinoma In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23052527. [PMID: 35269669 PMCID: PMC8909974 DOI: 10.3390/ijms23052527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
Despite recent advances in treatment, the prognosis of oral cancer remains poor, and prevention of recurrence and metastasis is critical. Olaparib is a PARP1 inhibitor that blocks polyADP-ribosylation, which is involved in the epithelial–mesenchymal transition (EMT) characteristic of tumor recurrence. We explored the potential of olaparib in inhibiting cancer invasion in oral carcinoma using three oral cancer cell lines, HSC-2, Ca9-22, and SAS. Olaparib treatment markedly reduced their proliferation, migration, invasion, and adhesion. Furthermore, qRT-PCR revealed that olaparib inhibited the mRNA expression of markers associated with tumorigenesis and EMT, notably Ki67, Vimentin, β-catenin, MMP2, MMP9, p53, and integrin α2 and β1, while E-Cadherin was upregulated. In vivo analysis of tumor xenografts generated by injection of HSC-2 cells into the masseter muscles of mice demonstrated significant inhibition of tumorigenesis and bone invasion by olaparib compared with the control. This was associated with reduced expression of proteins involved in osteoclastogenesis, RANK and RANKL. Moreover, SNAIL and PARP1 were downregulated, while E-cadherin was increased, indicating the effect of olaparib on proteins associated with EMT in this model. Taken together, these findings confirm the effects of olaparib on EMT and bone invasion in oral carcinoma and suggest a new therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Nanami Nakamura
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
| | - Hisako Fujihara
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
- Department of Oral Hygiene, Tsurumi Junior College, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
- Correspondence: ; Tel.: +81-45-580-8330; Fax: +81-45-581-1391
| | - Koji Kawaguchi
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
| | - Hiroyuki Yamada
- Division of Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8050, Japan;
| | - Ryoko Nakayama
- Department of Pathology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan;
| | - Masaaki Yasukawa
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
| | - Yuta Kishi
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
| | - Yoshiki Hamada
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
| | - Mitsuko Masutani
- Department of Frontier Life Science, Graduate School of Biochemical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan;
- Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
11
|
Niu G, Hao J, Sheng S, Wen F. Role of T-box genes in cancer, epithelial-mesenchymal transition, and cancer stem cells. J Cell Biochem 2021; 123:215-230. [PMID: 34897787 DOI: 10.1002/jcb.30188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Sharing a common DNA binding motif called T-box, transcription factor T-box gene family controls embryonic development and is also involved in cancer progression and metastasis. Cancer metastasis shows therapy resistance and involves complex processes. Among them, epithelial-mesenchymal transition (EMT) triggers cancer cell invasiveness and the acquisition of stemness of cancer cells, called cancer stem cells (CSCs). CSCs are a small fraction of tumor bulk and are capable of self-renewal and tumorsphere formation. Recent progress has highlighted the critical roles of T-box genes in cancer progression, EMT, and CSC function, and such regulatory functions of T-box genes have emerged as potential therapeutic candidates for cancer. Herein we summarize the current understanding of the regulatory mechanisms of T-box genes in cancer, EMT, and CSCs, and discuss the implications of targeting T-box genes as anticancer therapeutics.
Collapse
Affiliation(s)
- Gengle Niu
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jin Hao
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Surui Sheng
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyuan Wen
- Department of Outpatient, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|