1
|
Bredel M, Espinosa L, Kim H, Scholtens DM, McElroy JP, Rajbhandari R, Meng W, Kollmeyer TM, Malta TM, Quezada MA, Harsh GR, Lobo-Jarne T, Solé L, Merati A, Nagaraja S, Nair S, White JJ, Thudi NK, Fleming JL, Webb A, Natsume A, Ogawa S, Weber RG, Bertran J, Haque SJ, Hentschel B, Miller CR, Furnari FB, Chan TA, Grosu AL, Weller M, Barnholtz-Sloan JS, Monje M, Noushmehr H, Jenkins RB, Rogers CL, MacDonald DR, Pugh SL, Chakravarti A. Haploinsufficiency of NFKBIA reshapes the epigenome antipodal to the IDH mutation and imparts disease fate in diffuse gliomas. Cell Rep Med 2023; 4:101082. [PMID: 37343523 PMCID: PMC10314122 DOI: 10.1016/j.xcrm.2023.101082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/18/2022] [Accepted: 05/18/2023] [Indexed: 06/23/2023]
Abstract
Genetic alterations help predict the clinical behavior of diffuse gliomas, but some variability remains uncorrelated. Here, we demonstrate that haploinsufficient deletions of chromatin-bound tumor suppressor NFKB inhibitor alpha (NFKBIA) display distinct patterns of occurrence in relation to other genetic markers and are disproportionately present at recurrence. NFKBIA haploinsufficiency is associated with unfavorable patient outcomes, independent of genetic and clinicopathologic predictors. NFKBIA deletions reshape the DNA and histone methylome antipodal to the IDH mutation and induce a transcriptome landscape partly reminiscent of H3K27M mutant pediatric gliomas. In IDH mutant gliomas, NFKBIA deletions are common in tumors with a clinical course similar to that of IDH wild-type tumors. An externally validated nomogram model for estimating individual patient survival in IDH mutant gliomas confirms that NFKBIA deletions predict comparatively brief survival. Thus, NFKBIA haploinsufficiency aligns with distinct epigenome changes, portends a poor prognosis, and should be incorporated into models predicting the disease fate of diffuse gliomas.
Collapse
Affiliation(s)
- Markus Bredel
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA.
| | - Lluís Espinosa
- Cancer Research Program, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Institut Mar d'Investigacions Mèdiques, Hospital del Mar, 08003 Barcelona, Spain
| | - Hyunsoo Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Denise M Scholtens
- Division of Biostatistics-Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph P McElroy
- Center for Biostatistics-Department of Biomedical Informatics, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Rajani Rajbhandari
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Wei Meng
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Thomas M Kollmeyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Tathiane M Malta
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI 48202, USA
| | - Michael A Quezada
- Department of Neurology & Neurological Sciences and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Griffith R Harsh
- Department of Neurological Surgery, University of California at Davis School of Medicine, Sacramento, CA 95817, USA
| | - Teresa Lobo-Jarne
- Cancer Research Program, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Institut Mar d'Investigacions Mèdiques, Hospital del Mar, 08003 Barcelona, Spain
| | - Laura Solé
- Cancer Research Program, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Institut Mar d'Investigacions Mèdiques, Hospital del Mar, 08003 Barcelona, Spain
| | - Aran Merati
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Surya Nagaraja
- Department of Neurology & Neurological Sciences and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sindhu Nair
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Jaclyn J White
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA
| | - Nanda K Thudi
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Jessica L Fleming
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Amy Webb
- Center for Biostatistics-Department of Biomedical Informatics, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya 464-8601, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Ruthild G Weber
- Institute for Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Joan Bertran
- Biosciences Department, Faculty of Sciences, Technology, and Engineering. University of Vic-Central University of Catalonia, 08500 Vic, Spain
| | - S Jaharul Haque
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany
| | - C Ryan Miller
- Division of Neuropathology-Department of Pathology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Frank B Furnari
- Laboratory of Tumor Biology, Division of Regenerative Medicine-Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Freiburg, 79106 Freiburg, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Jill S Barnholtz-Sloan
- Division of Cancer Epidemiology and Genetics-National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michelle Monje
- Department of Neurology & Neurological Sciences and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Houtan Noushmehr
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI 48202, USA
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - David R MacDonald
- London Regional Cancer Program, Western University, London, ON N6A 5W9, Canada
| | - Stephanie L Pugh
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA 19103, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Afshari H, Noori S, Shokri B, Zarghi A. Co-treatment of Naringenin and Ketoprofen-RGD Suppresses Cell Proliferation via Calmodulin/PDE/cAMP/PKA Axis Pathway in Leukemia and Ovarian Cancer Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e136131. [PMID: 38116560 PMCID: PMC10728835 DOI: 10.5812/ijpr-136131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 12/21/2023]
Abstract
Background Naringenin (Nar) has anti-inflammatory and anticarcinogenic properties. Arginine-glycine- aspartate (RGD) is a tripeptidic sequence used as an integrin ligand and targeting system for delivering chemotherapeutic agents to cancer cells. Objectives In this study, the inhibitory effects of Nar and ketoprofen-RGD on leukemia and ovarian cancer cells (K562 and SKOV3) were explored for the first time, focusing on their proliferation activity and their anti-inflammatory capacity. Methods Analyses were conducted on the calmodulin (CaM)-dependent phosphodiesterase 1 (PDE1) activation by ketoprofen-RGD, Nar, and their combination. These drugs' effects on protein kinase A (PKA) activation, intracellular cyclic adenosine monophosphate (cAMP) level, and PDE1 inhibition were identified. Later, it was also evaluated if ketoprofen-RGD alone or in combination with Nar had anti-inflammatory effects. Results Nar improved the antagonizing consequences of ketoprofen-RGD on the CaM protein, which hinders PDE1, improving PKA activity and cAMP levels. A mixture of ketoprofen-RGD and Nar and ketoprofen-RGD alone diminished K562 and SKOV3 cell viability through the cAMP/PKA pathway by inhibiting PDE1 and CaM. These two compounds showed anti-inflammatory effects on both cell lines. Conclusions This study indicated for the first time that combining ketoprofen-RGD and Nar can be a promising anti-inflammatory therapeutic regimen for treating leukemia and ovarian cancer.
Collapse
Affiliation(s)
- Havva Afshari
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoofe Noori
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Shokri
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol 2022; 237:2770-2795. [PMID: 35561232 DOI: 10.1002/jcp.30759] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-β, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Bassiri
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Rasoul Raesi
- PhD in Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Ren DY, Yuan XR, Tu CX, Shen JL, Li YW, Yan AH, Ru Y, Han HY, Yang YM, Liu Y, Li HY. Long Noncoding RNA 00472: A Novel Biomarker in Human Diseases. Front Pharmacol 2021; 12:726908. [PMID: 34987381 PMCID: PMC8722734 DOI: 10.3389/fphar.2021.726908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in human diseases. They control gene expression levels and influence various biological processes through multiple mechanisms. Functional abnormalities in lncRNAs are strongly associated with occurrence and development of various diseases. LINC00472, which is located on chromosome 6q13, is involved in several human diseases, particularly cancers of the breast, lung, liver, osteosarcoma, bladder, colorectal, ovarian, pancreatic and stomach. Importantly, LINC00472 can be used as a biomarker for breast cancer cell sensitivity to chemotherapeutic regimens, including doxorubicin. LINC00472 is regulated by microRNAs and several signaling pathways. However, the significance of LINC00472 in human diseases has not been clearly established. In this review, we elucidate on the significance of LINC00472 in various human diseases, indicating that LINC00472 may be a diagnostic, prognostic as well as therapeutic target for these diseases.
Collapse
Affiliation(s)
- Dan-yang Ren
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Xin-rong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-xia Tu
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Jian-ling Shen
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Yun-wei Li
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Ai-hua Yan
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Yi Ru
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Hui-yun Han
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Yan-ming Yang
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Yan Liu
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Hui-ying Li
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|