1
|
Marvi MV, Evangelisti C, Cerchier CB, Fazio A, Neri I, Koufi FD, Blalock W, Cenni V, Zoli M, Asioli S, Morandi L, Franceschi E, Manzoli L, Capanni C, Ratti S. Combining prelamin A accumulation and oxidative stress: A strategy to target glioblastoma. Eur J Cell Biol 2025; 104:151491. [PMID: 40305992 DOI: 10.1016/j.ejcb.2025.151491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Glioblastoma is the most aggressive and prevalent tumor of the Central Nervous System (CNS) with limited treatment options and poor patient outcomes. Standard therapies, including surgery, radiation, and chemotherapy, provide only modest survival benefits, highlighting the need for innovative therapeutic approaches. This study investigates a novel strategy targeting prelamin A processing in glioblastoma cells. By inhibiting the farnesyltransferase enzyme using SCH66336 (Lonafarnib), we promote the accumulation of lamin A precursor (prelamin A) in glioblastoma cells, thereby increasing their susceptibility to oxidative stress induced by Menadione administration, while sparing normal human astrocytes. Notably, the combined SCH66336-Menadione treatment reduced cell proliferation, modified the expression of stemness markers, and decreased viability in patient-derived glioblastoma stem cells, which represent the population responsible for tumor aggressiveness and recurrence. These findings indicate that inhibiting prelamin A processing could be a potential strategy to reduce glioblastoma aggressiveness and enhance therapeutic outcomes, particularly for treatment-resistant glioblastoma stem cell populations. This approach shows potential for integrating prelamin A processing disruption as a complementary strategy in glioblastoma therapy.
Collapse
Affiliation(s)
- Maria Vittoria Marvi
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Camilla Bruna Cerchier
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| | - Antonietta Fazio
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Irene Neri
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Foteini-Dionysia Koufi
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - William Blalock
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| | - Vittoria Cenni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Neurochirurgia Ipofisi-Pituitary Unit, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luca Morandi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy; Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Cristina Capanni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Rizzoli Orthopedic Institute, Bologna, Italy.
| | - Stefano Ratti
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Paganelli F, Poli A, Truocchio S, Martelli AM, Palumbo C, Lattanzi G, Chiarini F. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm (Beijing) 2025; 6:e70073. [PMID: 39866838 PMCID: PMC11758262 DOI: 10.1002/mco2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate. In this review, we provide a comprehensive and up-to-date overview of how changes in NE composition affect nuclear mechanics and facilitate malignant transformation, grounded in the latest molecular and functional studies. We also review recent research that uses advanced technologies, including artificial intelligence, to predict malignancy risk and treatment outcomes by analyzing nuclear morphology. Finally, we discuss how progress in understanding nuclear mechanics has paved the way for mechanotherapy-a promising cancer treatment approach that exploits the mechanical differences between cancerous and healthy cells. Shifting the perspective on NE alterations from mere diagnostic markers to potential therapeutic targets, this review calls for further investigation into the evolving role of the NE in cancer, highlighting the potential for innovative strategies to transform conventional cancer therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alessandro Poli
- IFOM ETS ‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Serena Truocchio
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Carla Palumbo
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Chiarini
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
3
|
Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. SENSORS (BASEL, SWITZERLAND) 2023; 24:37. [PMID: 38202898 PMCID: PMC10780704 DOI: 10.3390/s24010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).
Collapse
Affiliation(s)
| | | | | | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (S.D.); (M.K.D.); (R.D.)
| |
Collapse
|
4
|
Sztankovics D, Krencz I, Moldvai D, Dankó T, Nagy Á, Nagy N, Bedics G, Rókusz A, Papp G, Tőkés AM, Pápay J, Sápi Z, Dezső K, Bödör C, Sebestyén A. Novel RICTOR amplification harbouring entities: FISH validation of RICTOR amplification in tumour tissue after next-generation sequencing. Sci Rep 2023; 13:19610. [PMID: 37949943 PMCID: PMC10638425 DOI: 10.1038/s41598-023-46927-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Alterations in mTOR signalling molecules, including RICTOR amplification, have been previously described in many cancers, particularly associated with poor prognosis. In this study, RICTOR copy number variation (CNV) results of diagnostic next-generation sequencing (NGS) were analysed in 420 various human malignant tissues. RICTOR amplification was tested by Droplet Digital PCR (ddPCR) and validated using the "gold standard" fluorescence in situ hybridisation (FISH). Additionally, the consequences of Rictor protein expression were also studied by immunohistochemistry. RICTOR amplification was presumed in 37 cases with CNV ≥ 3 by NGS, among these, 16 cases (16/420; 3.8%) could be validated by FISH, however, ddPCR confirmed only 11 RICTOR-amplified cases with lower sensitivity. Based on these, neither NGS nor ddPCR could replace traditional FISH in proof of RICTOR amplification. However, NGS could be beneficial to highlight potential RICTOR-amplified cases. The obtained results of the 14 different tumour types with FISH-validated RICTOR amplification demonstrate the importance of RICTOR amplification in a broad spectrum of tumours. The newly described RICTOR-amplified entities could initiate further collaborative studies with larger cohorts to analyse the prevalence of RICTOR amplification in rare diseases. Finally, our and further work could help to improve and expand future therapeutic opportunities for mTOR-targeted therapies.
Collapse
Affiliation(s)
- Dániel Sztankovics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Ildikó Krencz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Dorottya Moldvai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Titanilla Dankó
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Ákos Nagy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Noémi Nagy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Gábor Bedics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - András Rókusz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Gergő Papp
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Anna-Mária Tőkés
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Üllői út 93, 1091, Budapest, Hungary
| | - Judit Pápay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Zoltán Sápi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Katalin Dezső
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Csaba Bödör
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary.
| |
Collapse
|
5
|
Biswas D, Halder A, Barpanda A, Ghosh S, Chauhan A, Bhat L, Epari S, Shetty P, Moiyadi A, Ball GR, Srivastava S. Integrated Meta-Omics Analysis Unveils the Pathways Modulating Tumorigenesis and Proliferation in High-Grade Meningioma. Cells 2023; 12:2483. [PMID: 37887327 PMCID: PMC10604908 DOI: 10.3390/cells12202483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Meningioma, a primary brain tumor, is commonly encountered and accounts for 39% of overall CNS tumors. Despite significant progress in clinical research, conventional surgical and clinical interventions remain the primary treatment options for meningioma. Several proteomics and transcriptomics studies have identified potential markers and altered biological pathways; however, comprehensive exploration and data integration can help to achieve an in-depth understanding of the altered pathobiology. This study applied integrated meta-analysis strategies to proteomic and transcriptomic datasets comprising 48 tissue samples, identifying around 1832 common genes/proteins to explore the underlying mechanism in high-grade meningioma tumorigenesis. The in silico pathway analysis indicated the roles of extracellular matrix organization (EMO) and integrin binding cascades in regulating the apoptosis, angiogenesis, and proliferation responsible for the pathobiology. Subsequently, the expression of pathway components was validated in an independent cohort of 32 fresh frozen tissue samples using multiple reaction monitoring (MRM), confirming their expression in high-grade meningioma. Furthermore, proteome-level changes in EMO and integrin cell surface interactions were investigated in a high-grade meningioma (IOMM-Lee) cell line by inhibiting integrin-linked kinase (ILK). Inhibition of ILK by administrating Cpd22 demonstrated an anti-proliferative effect, inducing apoptosis and downregulating proteins associated with proliferation and metastasis, which provides mechanistic insight into the disease pathophysiology.
Collapse
Affiliation(s)
- Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; (D.B.); (A.H.); (A.B.); (A.C.)
| | - Ankit Halder
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; (D.B.); (A.H.); (A.B.); (A.C.)
| | - Abhilash Barpanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; (D.B.); (A.H.); (A.B.); (A.C.)
| | - Susmita Ghosh
- Leibniz-Institut für Analytische Wissenschaften—ISAS, 44227 Dortmund, Germany;
| | - Aparna Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; (D.B.); (A.H.); (A.B.); (A.C.)
| | - Lipika Bhat
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed-to-be University, Mumbai 400056, India;
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Centre, Mumbai 400012, India;
| | - Prakash Shetty
- Department of Neurosurgery, Tata Memorial Centre, Mumbai 400012, India; (P.S.); (A.M.)
| | - Aliasgar Moiyadi
- Department of Neurosurgery, Tata Memorial Centre, Mumbai 400012, India; (P.S.); (A.M.)
| | - Graham Roy Ball
- Medical Technology Research Centre, Anglia Ruskin University, East Rd., Cambridge CB1 1PT, UK;
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; (D.B.); (A.H.); (A.B.); (A.C.)
| |
Collapse
|
6
|
Urciuoli E, Peruzzi B. The Paradox of Nuclear Lamins in Pathologies: Apparently Controversial Roles Explained by Tissue-Specific Mechanobiology. Cells 2022; 11:cells11142194. [PMID: 35883635 PMCID: PMC9318957 DOI: 10.3390/cells11142194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
The nuclear lamina is a complex meshwork of intermediate filaments (lamins) that is located beneath the inner nuclear membrane and the surrounding nucleoplasm. The lamins exert both structural and functional roles in the nucleus and, by interacting with several nuclear proteins, are involved in a wide range of nuclear and cellular activities. Due their pivotal roles in basic cellular processes, lamin gene mutations, or modulations in lamin expression, are often associated with pathological conditions, ranging from rare genetic diseases, such as laminopathies, to cancer. Although a substantial amount of literature describes the effects that are mediated by the deregulation of nuclear lamins, some apparently controversial results have been reported, which may appear to conflict with each other. In this context, we herein provide our explanation of such “controversy”, which, in our opinion, derives from the tissue-specific expression of nuclear lamins and their close correlation with mechanotransduction processes, which could be very different, or even opposite, depending on the specific mechanical conditions that should not be compared (a tissue vs. another tissue, in vivo studies vs. cell cultures on glass/plastic supports, etc.). Moreover, we have stressed the relevance of considering and reproducing the “mechano-environment” in in vitro experimentation. Indeed, when primary cells that are collected from patients or donors are maintained in a culture, the mechanical signals deriving from canonical experimental procedures of cell culturing could alter the lamin expression, thereby profoundly modifying the assessed cell type, in some cases even too much, compared to the cell of origin.
Collapse
|
7
|
Pastorino F, Brignole C. Editorial of the Special Issue “Targeted Therapies for Cancer”. Biomedicines 2022; 10:biomedicines10051114. [PMID: 35625850 PMCID: PMC9138888 DOI: 10.3390/biomedicines10051114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022] Open
Abstract
Cancer, the second leading cause of death worldwide, continues to represent an impressive challenge for researchers and clinicians [...]
Collapse
Affiliation(s)
- Fabio Pastorino
- Correspondence: (F.P.); (C.B.); Tel.: +39-010-5636-3541 (F.P.); +39-010-5636-3533 (C.B.)
| | - Chiara Brignole
- Correspondence: (F.P.); (C.B.); Tel.: +39-010-5636-3541 (F.P.); +39-010-5636-3533 (C.B.)
| |
Collapse
|
8
|
Grespi F, Vianello C, Cagnin S, Giacomello M, De Mario A. The Interplay of Microtubules with Mitochondria–ER Contact Sites (MERCs) in Glioblastoma. Biomolecules 2022; 12:biom12040567. [PMID: 35454156 PMCID: PMC9030160 DOI: 10.3390/biom12040567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Gliomas are heterogeneous neoplasms, classified into grade I to IV according to their malignancy and the presence of specific histological/molecular hallmarks. The higher grade of glioma is known as glioblastoma (GB). Although progress has been made in surgical and radiation treatments, its clinical outcome is still unfavorable. The invasive properties of GB cells and glioma aggressiveness are linked to the reshaping of the cytoskeleton. Recent works suggest that the different susceptibility of GB cells to antitumor immune response is also associated with the extent and function of mitochondria–ER contact sites (MERCs). The presence of MERCs alterations could also explain the mitochondrial defects observed in GB models, including abnormalities of energy metabolism and disruption of apoptotic and calcium signaling. Based on this evidence, the question arises as to whether a MERCs–cytoskeleton crosstalk exists, and whether GB progression is linked to an altered cytoskeleton–MERCs interaction. To address this possibility, in this review we performed a meta-analysis to compare grade I and grade IV GB patients. From this preliminary analysis, we found that GB samples (grade IV) are characterized by altered expression of cytoskeletal and MERCs related genes. Among them, the cytoskeleton-associated protein 4 (CKAP4 or CLIMP-63) appears particularly interesting as it encodes a MERCs protein controlling the ER anchoring to microtubules (MTs). Although further in-depth analyses remain necessary, this perspective review may provide new hints to better understand GB molecular etiopathogenesis, by suggesting that cytoskeletal and MERCs alterations cooperate to exacerbate the cellular phenotype of high-grade GB and that MERCs players can be exploited as novel biomarkers/targets to enhance the current therapy for GB.
Collapse
Affiliation(s)
- Francesca Grespi
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
| | - Caterina Vianello
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
| | - Stefano Cagnin
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
- CRIBI Biotechnology Center, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- CIR-Myo Myology Center, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
| | - Marta Giacomello
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- Correspondence: (M.G.); (A.D.M.)
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- Correspondence: (M.G.); (A.D.M.)
| |
Collapse
|
9
|
Moresi F, Rossetti DV, Vincenzoni F, Simboli GA, La Rocca G, Olivi A, Urbani A, Sabatino G, Desiderio C. Investigating Glioblastoma Multiforme Sub-Proteomes: A Computational Study of CUSA Fluid Proteomic Data. Int J Mol Sci 2022; 23:ijms23042058. [PMID: 35216175 PMCID: PMC8879425 DOI: 10.3390/ijms23042058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Based on our previous proteomic study on Cavitating Ultrasound Aspirator (CUSA) fluid pools of Newly Diagnosed (ND) and Recurrent (R) glioblastomas (GBMs) of tumor core and periphery, as defined by 5-aminolevulinc acid (5-ALA) metabolite fluorescence, this work aims to apply a bioinformatic approach to investigate specifically into three sub-proteomes, i.e., Not Detected in Brain (NB), Cancer Related (CR) and Extracellular Vesicles (EVs) proteins following selected database classification. The study of these yet unexplored specific datasets aims to understand the high infiltration capability and relapse rate that characterizes this aggressive brain cancer. Out of the 587 proteins highly confidently identified in GBM CUSA pools, 53 proteins were classified as NB. Their gene ontology (GO) analysis showed the over-representation of blood coagulation and plasminogen activating cascade pathways, possibly compatible with Blood Brain Barrier damage in tumor disease and surgery bleeding. However, the NB group also included non-blood proteins and, specifically, histones correlated with oncogenesis. Concerning CR proteins, 159 proteins were found in the characterized GBM proteome. Their GO analysis highlighted the over-representation of many pathways, primarily glycolysis. Interestingly, while CR proteins were identified in ND-GBM exclusively in the tumor zones (fluorescence positive core and periphery zones) as predictable, conversely, in R-GBM they were unexpectedly characterized prevalently in the healthy zone (fluorescence negative tumor periphery). Relative to EVs protein classification, 60 proteins were found. EVs are over-released in tumor disease and are important in the transport of biological macromolecules. Furthermore, the presence of EVs in numerous body fluids makes them a possible low-invasive source of brain tumor biomarkers to be investigated. These results give new hints on the molecular features of GBM in trying to understand its aggressive behavior and open to more in-depth investigations to disclose potential disease biomarkers.
Collapse
Affiliation(s)
- Fabiana Moresi
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy; (F.M.); (G.L.R.); (G.S.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.V.); (A.U.)
| | - Diana Valeria Rossetti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy;
| | - Federica Vincenzoni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.V.); (A.U.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.A.S.); (A.O.)
| | - Giorgia Antonia Simboli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.A.S.); (A.O.)
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Giuseppe La Rocca
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy; (F.M.); (G.L.R.); (G.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.A.S.); (A.O.)
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Alessandro Olivi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.A.S.); (A.O.)
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Andrea Urbani
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.V.); (A.U.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.A.S.); (A.O.)
| | - Giovanni Sabatino
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy; (F.M.); (G.L.R.); (G.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.A.S.); (A.O.)
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy;
- Correspondence:
| |
Collapse
|