1
|
Sheu JJ, Yeh JN, Chen YC, Chiang JY, Sung PH, Huang CR, Li YC, Yip HK. Shock wave-pretreated ADMSCs of cell-sheet scaffold (CSS) patched on the left ventricular wall (LVW) inhibited LVW remodeling in mini-pig MI: role of CSS on counteracting Laplace's Law of LVW stress - experimental study. Int J Surg 2024; 110:7546-7562. [PMID: 39497545 PMCID: PMC11634124 DOI: 10.1097/js9.0000000000002119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/05/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND We investigated whether shock wave (SW)-pretreated autologous adipocyte-derived mesenchymal stem cells (ADMSCs) seeded in the cell-sheet scaffold (CSS) could inhibit left ventricular (LV) remodeling and improve LV ejection fraction (LVEF) in old myocardial infarction (MI). METHODS Mini-pigs ( n =20) were divided into group 1 (sham-operated control), group 2 (old MI), group 3 (old MI + autologous ADMSCs/1.0×10 7 in CSS on LV myocardium), and group 4 [old MI + SW (0.12 mJ/mm 2 for total 140 shots)-pretreated ADMSCs in CSS on LV myocardium]. Treatments started on day 28 after MI induction. In-vivo and in-vitro studies were conducted. RESULTS Cell viability/relative mitochondria DNA expression/mitochondrial cytochrome C/adenosine triphosphate concentration in ADMCSs and protein expressions of angiogenesis factors [vascular endothelial growth factor (VEGF)/stromal cell-derived factor-1 (SDF-1)/mitochondrial respiratory chain complexes I-IV/oxygen consumption rate] were higher in group 4 than in group 3 ( P <0.001). By day 180, LVEF and small vessel numbers in the peri-infarct or infarct area were highest in group 1, lowest in group 2, and significantly lower in group 3 than in group 4. In contrast, the LV dimension was opposite to the pattern of change in LVEF in all groups ( P <0.0001). The basal/middle/apical infarct and fibrotic areas were inversely related to LVEF in all groups (all P <0.0001). Protein levels of angiogenetic markers (SDF-1α/C-X-C chemokine receptor type 4/VEGF/angiopoietin-1) were significantly and persistently increased from groups 1 to 4. In contrast, protein levels of endothelial cell markers (von Willebrand factor or endothelial nitric oxide synthase) showed an identical pattern to LVEF in all groups (all P <0.0001). CONCLUSION SW pretreatment of ADMSCs seeded in CSS offered significant benefits in preserving LV performance and ameliorating LV remodeling in mini-pigs with old MI.
Collapse
Affiliation(s)
- Jiunn-Jye Sheu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan, ROC
| | - Jui-Ning Yeh
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yin-Chia Chen
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - John Y. Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Pei-Hsun Sung
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan, ROC
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Chi-Ruei Huang
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Hon-Kan Yip
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan, ROC
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| |
Collapse
|
2
|
Kou D, Chen Q, Wang Y, Xu G, Lei M, Tang X, Ni H, Zhang F. The application of extracorporeal shock wave therapy on stem cells therapy to treat various diseases. Stem Cell Res Ther 2024; 15:271. [PMID: 39183302 PMCID: PMC11346138 DOI: 10.1186/s13287-024-03888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
In the last ten years, stem cell (SC) therapy has been extensively used to treat a range of conditions such as degenerative illnesses, ischemia-related organ dysfunction, diabetes, and neurological disorders. However, the clinical application of these therapies is limited due to the poor survival and differentiation potential of stem cells (SCs). Extracorporeal shock wave therapy (ESWT), as a non-invasive therapy, has shown great application potential in enhancing the proliferation, differentiation, migration, and recruitment of stem cells, offering new possibilities for utilizing ESWT in conjunction with stem cells for the treatment of different systemic conditions. The review provides a detailed overview of the advances in using ESWT with SCs to treat musculoskeletal, cardiovascular, genitourinary, and nervous system conditions, suggesting that ESWT is a promising strategy for enhancing the efficacy of SC therapy for various diseases.
Collapse
Affiliation(s)
- Dongyan Kou
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang, 065000, PR China
| | - Qingyu Chen
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang, 065000, PR China
| | - Yujing Wang
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang, 065000, PR China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, PR China
| | - Xiaobin Tang
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang, 065000, PR China
| | - Hongbin Ni
- Department of Neurosurgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China.
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, PR China.
| |
Collapse
|
3
|
Mir-326 potentiates radiosensitivity of cervical squamous cell carcinoma through downregulating SMO expression in the Hedgehog signaling pathway. Genes Genomics 2022; 44:981-991. [PMID: 35751784 DOI: 10.1007/s13258-022-01276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Radiotherapy resistance affects the therapeutic effect of cervical squamous cell carcinoma (CSCC). Smoothened (Smo) is an anticancer target of the Hedgehog (Hh) pathway and its mutation is related to drug resistance. OBJECTIVE To explore the roles of miR-326 and Smoothened (SMO) on radiation resistance in patients with cervical carcinoma. METHODS Expression of miR-326 and SMO in cervical cancer tissue and radioresistant cell lines were analyzed. The radiation response with the expression of miR-326 was evaluated in tissue and cells. Bioinformatics analysis and literature review were performed to explore the target of miR-326. The regulation of miR-326 to SMO mRNA was verified through the dual-luciferase reporter assay. RESULTS Patients with poor radiation response have lower miR-326 and higher SMO expression. Upregulation of miR-326 decreased SMO expression and its downstream proteins but does not affect the proliferation of CSCC cells. The upregulation of miR-326 increased radiation sensitivity of the CSCC cell through downregulating SMO and its downstream proteins in the Hedgehog (Hh) signaling pathway. CONCLUSIONS miR-326 may predict the treatment response to radiation, and upregulating miR-326 may improve the treatment response to radiation.
Collapse
|
4
|
Cheng YH, Tsai NC, Chen YJ, Weng PL, Chang YC, Cheng JH, Ko JY, Kang HY, Lan KC. Extracorporeal Shock Wave Therapy Combined with Platelet-Rich Plasma during Preventive and Therapeutic Stages of Intrauterine Adhesion in a Rat Model. Biomedicines 2022; 10:biomedicines10020476. [PMID: 35203684 PMCID: PMC8962268 DOI: 10.3390/biomedicines10020476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Intrauterine adhesion (IUA) is caused by artificial endometrial damage during intrauterine cavity surgery. The typical phenotype involves loss of spontaneous endometrium recovery and angiogenesis. Undesirable symptoms include abnormal menstruation and infertility; therefore, prevention and early treatment of IUA remain crucial issues. Extracorporeal shockwave therapy (ESWT) major proposed therapeutic mechanisms include neovascularization, tissue regeneration, and fibrosis. We examined the effects of ESWT and/or platelet-rich plasma (PRP) during preventive and therapeutic stages of IUA by inducing intrauterine mechanical injury in rats. PRP alone, or combined with ESWT, were detected an increased number of endometrial glands, elevated vascular endothelial growth factor protein expression (hematoxylin-eosin staining and immunohistochemistry), and reduced fibrosis rate (Masson trichrome staining). mRNA expression levels of nuclear factor-kappa B, tumor necrosis factor-α, transforming growth factor-β, interleukin (IL)-6, collagen type I alpha 1, and fibronectin were reduced during two stages. However, PRP alone, or ESWT combined with PRP transplantation, not only increased the mRNA levels of vascular endothelial growth factor (VEGF) and progesterone receptor (PR) during the preventive stage but also increased PR, insulin-like growth factor 1 (IGF-1), and IL-4 during the therapeutic stage. These findings revealed that these two treatments inhibited endometrial fibrosis and inflammatory markers, thereby inhibiting the occurrence and development of intrauterine adhesions.
Collapse
Affiliation(s)
- Yin-Hua Cheng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (Y.-H.C.); (Y.-J.C.); (P.-L.W.); (Y.-C.C.); (H.-Y.K.)
| | - Ni-Chin Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Obstetrics and Gynecology, Pingtung Christian Hospital, Pingtung 900, Taiwan
| | - Yun-Ju Chen
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (Y.-H.C.); (Y.-J.C.); (P.-L.W.); (Y.-C.C.); (H.-Y.K.)
| | - Pei-Ling Weng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (Y.-H.C.); (Y.-J.C.); (P.-L.W.); (Y.-C.C.); (H.-Y.K.)
| | - Yun-Chiao Chang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (Y.-H.C.); (Y.-J.C.); (P.-L.W.); (Y.-C.C.); (H.-Y.K.)
| | - Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.-H.C.); (J.-Y.K.)
- Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Jih-Yang Ko
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.-H.C.); (J.-Y.K.)
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Hong-Yo Kang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (Y.-H.C.); (Y.-J.C.); (P.-L.W.); (Y.-C.C.); (H.-Y.K.)
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Kuo-Chung Lan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (Y.-H.C.); (Y.-J.C.); (P.-L.W.); (Y.-C.C.); (H.-Y.K.)
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung 412, Taiwan
- Correspondence: ; Tel.: +886-7-7317123-8654; Fax: +886-7-7322915
| |
Collapse
|