1
|
Muthumanickam S, Ramachandran B, Jeyakanthan J, Jegatheswaran S, Pandi B. Designing a novel drug-drug conjugate as a prodrug for breast cancer therapy: in silico insights. Mol Divers 2025; 29:991-1007. [PMID: 38833125 DOI: 10.1007/s11030-024-10886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/24/2024] [Indexed: 06/06/2024]
Abstract
Breast cancer (BC) poses a significant global health threat, necessitating innovative therapeutic approaches. The ribosomal s6 kinase 2 (RSK2) has emerged as a promising target due to its roles in cell proliferation and survival. This study proposes a drug-drug conjugate prodrug comprising Methotrexate (hydrophobic) and Capecitabine (hydrophilic) for BC treatment. In silico approaches, including Molecular Docking, Molecular Dynamics Simulations, MM-PBSA, ADME, and DFT calculations were employed to evaluate the prodrug's potential. The designed MET-CAP ligand exhibits a robust docking score (-8.980 kcal/mol), superior binding affinity (-53.16 kcal/mol), and stable dynamic behavior (0.62 nm) compared to native ligands. The DFT results reveal intramolecular charge transfer in MET-CAP (HLG = 0.09 eV), indicating its potential as a BC inhibitor. ADME analysis suggests satisfactory pharmaceutically relevant properties. The results indicate that the conjugated MET-CAP ligand exhibits favorable binding characteristics, stability, and pharmaceutically relevant properties, making it a potential RSK2 inhibitor for BC therapy. The multifaceted approach provides insights into binding interactions, stability, and pharmacokinetic properties, laying the foundation for further experimental validation and potential clinical development.
Collapse
Affiliation(s)
| | - Balajee Ramachandran
- Department of Pharmacology, Saveetha Institute of Technical and Medical Sciences (SIMATS), Chennai, 600 077, India
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | | | - Boomi Pandi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
2
|
Mezhubeinuo, Mohanta R, Bordoloi H, Verma AK, Bez G. L-proline H 2SO 4 catalyzed synthesis of novel coumarin-based spiroindolino-3,4-dihydropyrimidin-2(1H)-ones: in vitro cytotoxic assay and molecular docking study. Mol Divers 2025; 29:607-622. [PMID: 39030285 DOI: 10.1007/s11030-024-10878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 07/21/2024]
Abstract
Development of environmentally benign catalyst systems, especially those derived from readily available nature's pool, in multicomponent synthesis, consolidates multiple facets of green chemistry. Here, an L-proline derived green acid catalyst in the form of L-proline⋅H2SO4 was developed and employed for multicomponent synthesis of coumarin-based spiroindolino-3,4-dihydropyrimidin-2(1H)-ones from the reaction of 4-hydroxycoumarin, isatin and urea/thiourea. Preliminary cytotoxicity studies showed that a couple of compounds (M5 and M6) have good cytotoxicity (40-50%) against in Dalton's Lymphoma (DL) cells while demonstrating minimal cytotoxicity (10-12%) for normal non-cancerous cell lines. Molecular docking simulations for the least and most cytotoxic compounds, M3 and M6 respectively, against nineteen tumor target proteins were carried out, and seven of them were identified to test against all the sixteen compounds. Based on the estimated docking score and inhibition constants (Ki), the interaction of the compounds with the tumor target protein, beta-hexosaminidase B (PDB ID: 1NOW) matched closely with in vitro cytotoxicity data.
Collapse
Affiliation(s)
- Mezhubeinuo
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Rahul Mohanta
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Hemanta Bordoloi
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Akalesh Kumar Verma
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, India.
| | - Ghanashyam Bez
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
3
|
Elkafoury EM, El-Hamamsy MH, El-Bastawissy EA, Afarinkia K, Aboukhatwa SM. Synergy trap for guardian angels of DNA: Unraveling the anticancer potential of phthalazinone-thiosemicarbazone hybrids through dual PARP-1 and TOPO-I inhibition. Bioorg Chem 2024; 153:107924. [PMID: 39488147 DOI: 10.1016/j.bioorg.2024.107924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Targeting DNA repair, like PARP-1 and TOPO-I, shows promise in cancer therapy. However, resistance to single agents requires complex and costly combination strategies with significant side effects. Thus, there's an urgent need for single agents with dual inhibition. Current dual inhibitors focusing on the C-4 position of the phthalazinone core for PARP inhibition often have high molecular weights. Clinical use of PARP inhibitors is limited by hematological and other toxicities from concurrent PARP-2 inhibition. They're mainly effective in gynecological cancers, despite high PARP-1 and TOPO-I expression in various cancers. Moreover, their efficacy is limited to BRCA1-expressing breast cancer. In this study, we synthesized 27 dual inhibitors for PARP-1 and TOPO-I with molecular weights below 500 g/mol through hybridizing a phthalazinone core with a thiosemicarbazone linker. Among these, 6c demonstrated exceptional broad spectrum and potency against the NCI 60 cancer cell lines, with GI50 values from 1.65 to 5.63 µM. Notably, 6c exposed the highest PARP-1 inhibition (IC50 = 32.2 ± 3.26 nM) and a selectivity over PARP-2 (IC50 = 2844 ± 111 nM). Furthermore, 6c's inhibition of TOPO-I (IC50 = 46.2 ± 3.3 nM) surpassed the control camptothecin by eleven-fold. Mechanistically, 6c disrupted the cell cycle at the S phase, induced apoptosis, and displayed a favorable safety profile against normal cells. Compound 6c induced PARP trapping and synthetic lethality and showed high efficacy on BRCA1-expressing cell lines. So, decreasing the likelihood of cancer cell resistance to chemotherapy. Drug-likeness predictions and molecular modeling were also performed.
Collapse
Affiliation(s)
- Eman M Elkafoury
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Mervat H El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Eman A El-Bastawissy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Kamyar Afarinkia
- School of Biomedical Sciences, University of West London, London W5 5RF, UK
| | - Shaimaa M Aboukhatwa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
4
|
Xu YS, Xiang Y, Zhai L, Chen C, Wu XR, Chen WY, Liu L, Zhao MH, Liu XL, Yang KW. Discovery of a Highly Promising Disulfide Derivative Scaffold as Inhibitor of SARS-CoV-2 Main Protease. Chem Biodivers 2024; 21:e202401034. [PMID: 39109873 DOI: 10.1002/cbdv.202401034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024]
Abstract
The main protease (Mpro) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) represents a promising target for antiviral drugs aimed at combating COVID-19. Consequently, the development of Mpro inhibitor is an ideal strategy for combating the virus. In this study, we identified twenty-two dithiocarbamates (1 a-h), dithiocarbamate-Cu(II) complexes (2 a-hCu) and disulfide derivatives (2 a-e, 2 i) as potent inhibitors of Mpro, with IC50 value range of 0.09-0.72, 0.9-24.7, and 15.1-111 μM, respectively, through FRET screening. The enzyme kinetics, inhibition mode, jump dilution, and DTT assay revealed that 1 g may be a partial reversible inhibitor, while 2 d and 2 f-Cu are the irreversible and dose- and time-dependent inhibitors, potentially covalently binding to the target. Binding of 2 d, 2 f-Cu, and 1 g to Mpro was found to decrease the stability of the protein. Additionally, DTT assays and thermal shift assays indicated that 2 f-Cu and 2 d are the nonspecific and promiscuous cysteine protease inhibitor. ICP-MS implied that the inhibitory activity of 2 f-Cu may stem from the uptake of Cu(II) by the enzyme. Cytotoxicity assays demonstrated that 2 d and 1 g exhibit low cytotoxicity, whereas 2 f-Cu show certain cytotoxicity in L929 cells. Overall, this work presents two promising scaffolds for the development of Mpro inhibitors to combat COVID-19.
Collapse
Affiliation(s)
- Yin-Sui Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Yang Xiang
- College of Physical Education, Yan'an University, Yan'an, 716000, PR China
| | - Le Zhai
- Engineering Research Center of Advanced Ferroelectric Functional Materials, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, PR China
| | - Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Xiao-Rong Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Wei-Ya Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Lu Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Mu-Han Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Xiao-Long Liu
- School of medicine, Yan'an University, Yan'an, 716000, PR China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| |
Collapse
|
5
|
Chaudhary U, Kumar P, Sharma P, Chikara A, Barua A, Mahiya K, Adhikari Subin J, Nath Yadav P, Raj Pokharel Y. Synthesis of 5-hydroxyisatin thiosemicarbazones, spectroscopic investigation, protein-ligand docking, and in vitro anticancer activity. Bioorg Chem 2024; 153:107872. [PMID: 39442462 DOI: 10.1016/j.bioorg.2024.107872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
A series of novel modifications were performed at the N(4) position of 5-hydroxyisatin thiosemicarbazone (TSC). The structure-activity approach is applied to design and synthesize derivatives by condensing thiosemicarbazides with 5-hydroxy isatin. The TSCs were characterized by various spectroscopic techniques viz. FTIR, 1H NMR, 13C NMR, UV-Vis, HRMS data, CHN elemental analysis, and single crystal X-ray diffraction. Biological evaluation of the synthesized compounds revealed the anticancer potency of the TSC analogues against breast cancer (MD-AMD-231, MCF-7), lung cancer (A549, NCI-H460), prostate cancer (PC3), and skin cancer (A431). The molecules, L2, L3, and L6 showed activity in the micromolar range (IC50; 0.19-2.19 μM). L6 exhibited the highest potency against skin cancer A431 cell line, with an IC50 of 0.19 μM compared to 1.8 μM with triapine and showed low toxicity against PNT-2 cells with an SI index of >100 μM. The mechanistic study revealed that L6 inhibited cancer cell proliferation, colony formation, and 3-dimensional spheroid formation by targeting the Ras/MAPK axis. It induced DNA damage and impaired DNA damage repair machinery, which led to the accumulation of DSB. Also, it lowered the ERK1/2 expression, which affected the caspase 3 activity and showed higher binding affinity compared to the FDA-approved drug Lenalidomide in molecular docking studies. Our findings demonstrated the possible future anticancer drug potency of L6 in the skin cancer A431 cells.
Collapse
Affiliation(s)
- Upendra Chaudhary
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Piyush Kumar
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Pratibha Sharma
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Anshul Chikara
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Ayanti Barua
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Kuldeep Mahiya
- Department of Chemistry, F G M Government College, Adampur, Mandi Adampur, Hisar 125052, Haryana, India
| | - Jhashanath Adhikari Subin
- Scientific Research and Training Nepal P. Ltd., Bioinformatics and Cheminformatics Division, Kaushaltar, Bhaktapur, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| | - Yuba Raj Pokharel
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India.
| |
Collapse
|
6
|
Kubo AI, Uzairu A, Babalola IT, Ibrahim MT, Umar AB. QSAR, molecular docking, and pharmacokinetic analysis of thiosemicarbazone-indole compounds targeting prostate cancer cells. J Taibah Univ Med Sci 2024; 19:823-834. [PMID: 39228962 PMCID: PMC11369465 DOI: 10.1016/j.jtumed.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/23/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024] Open
Abstract
Objectives By 2030, prostate cancer is estimated to account for 1.7 million new cases and 499,000 deaths. The objectives of this research were to create a model revealing the activity of thiosemicarbazone-indole compounds as anticancer agents against the PC3 cell line; perform docking analysis between the compounds and the target enzyme; and predict the pharmacokinetics and drug-likeness of the compounds under investigation. Methods The quantitative structureactivity relationship (QSAR) method was used to build the model; molecular docking between the compounds and the target enzyme was performed; and the drug-likeness and pharmacokinetics of the inhibiting compounds was examined. Results The genetic function algorithm-multilinear regression approach was used for building the QSAR model. Build model 1 had the best performance, with R2 (coefficient of determination) = 0.972517, Radj (adjusted R-squared) = 0.964665, (CRp2) = 0.780922, and LOF (leave-one-out cross-validation) = 0.076524, demonstrated strongly indicated by the molecular descriptors. SHBd, SsCH3, JGI2, and RDF60P were highly dependent on proliferative activity. Compounds ID 7 and 22 had the potential to act as androgen receptor inhibitors, as suggested by molecular docking studies between the drugs and their target enzymes. Compounds ID 7 and 22 exhibited binding scores of -8.5 kcal/mol and -8.8 kcal/mol, respectively. The approved maximum medication molecules for oral bioavailability included the molecules with IDs 7 and 22. Conclusion This research provides valuable insights into the relationships among molecular descriptors, potential inhibitors, and pharmacokinetic properties in the treatment of PC3. These findings may contribute to the understanding and potential development of new therapeutic options for prostate cancer patients.
Collapse
Affiliation(s)
- Abdulrahman Ibrahim Kubo
- Department of Chemistry, Faculty of Science, Yobe State University, Damaturu, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Science, Adamawa State University, Mubi, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Faculty of Physical Science, Ahmadu Bello University, Zaria, Nigeria
| | | | - Muhammad Tukur Ibrahim
- Department of Chemistry, Faculty of Physical Science, Ahmadu Bello University, Zaria, Nigeria
| | - Abdullahi Bello Umar
- Department of Chemistry, Faculty of Physical Science, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
7
|
Munir R, Zaib S, Zia-ur-Rehman M, Javed H, Roohi A, Zaheer M, Fatima N, Bhat MA, Khan I. Exploration of morpholine-thiophene hybrid thiosemicarbazones for the treatment of ureolytic bacterial infections via targeting urease enzyme: Synthesis, biochemical screening and computational analysis. Front Chem 2024; 12:1403127. [PMID: 38855062 PMCID: PMC11157103 DOI: 10.3389/fchem.2024.1403127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
An important component of the pathogenicity of potentially pathogenic bacteria in humans is the urease enzyme. In order to avoid the detrimental impact of ureolytic bacterial infections, the inhibition of urease enzyme appears to be an appealing approach. Therefore, in the current study, morpholine-thiophene hybrid thiosemicarbazone derivatives (5a-i) were designed, synthesized and characterized through FTIR, 1H NMR, 13C NMR spectroscopy and mass spectrometry. A range of substituents including electron-rich, electron-deficient and inductively electron-withdrawing groups on the thiophene ring was successfully tolerated. The synthesized derivatives were evaluated in vitro for their potential to inhibit urease enzyme using the indophenol method. The majority of compounds were noticeably more potent than the conventional inhibitor, thiourea. The lead inhibitor, 2-(1-(5-chlorothiophen-2-yl)ethylidene)-N-(2-morpholinoethyl)hydrazinecarbothioamide (5g) inhibited the urease in an uncompetitive manner with an IC50 value of 3.80 ± 1.9 µM. The findings of the docking studies demonstrated that compound 5g has a strong affinity for the urease active site. Significant docking scores and efficient binding free energies were displayed by the lead inhibitor. Finally, the ADME properties of lead inhibitor (5g) suggested the druglikeness behavior with zero violation.
Collapse
Affiliation(s)
- Rubina Munir
- Department of Chemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | | | - Hira Javed
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Ayesha Roohi
- Department of Chemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Muhammad Zaheer
- Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore, Pakistan
| | - Nabiha Fatima
- Department of Chemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Mushtaq A, Asif R, Humayun WA, Naseer MM. Novel isatin-triazole based thiosemicarbazones as potential anticancer agents: synthesis, DFT and molecular docking studies. RSC Adv 2024; 14:14051-14067. [PMID: 38686286 PMCID: PMC11057040 DOI: 10.1039/d4ra01937g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Thiosemicarbazones of isatin have been found to exhibit versatile bioactivities. In this study, two distinct types of isatin-triazole hybrids 3a and 3b were accessed via copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC), together with their mono and bis-thiosemicarbazone derivatives 4a-h and 5a-h. In addition to the characterization by physical, spectral and analytical data, a DFT study was carried out to obtain the optimized geometries of all thiosemicarbazones. The global reactivity values showed that among the synthesized derivatives, 4c, 4g and 5c having nitro substituents are the most soft compounds, with compound 5c having the highest electronegativity and electrophilicity index values among the synthesized series, thus possessing strong binding ability with biomolecules. Molecular docking studies were performed to explore the inhibitory ability of the selected compounds against the active sites of the anticancer protein of phosphoinositide 3-kinase (PI3K). Among the synthesized derivatives, 4-nitro substituted bisthiosemicarbazone 5c showed the highest binding energy of -10.3 kcal mol-1. These findings demonstrated that compound 5c could be used as a favored anticancer scaffold via the mechanism of inhibition against the PI3K signaling pathways.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Rabbia Asif
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Waqar Ahmed Humayun
- Department of Medical Oncology & Radiotherapy, King Edward Medical University Lahore 54000 Pakistan
| | | |
Collapse
|
9
|
Sonker P, Tamang R, Mehata AK, Nidhar M, Sharma VP, Kumar V, Muthu MS, Koch B, Tewari AK. PTSA-induced synthesis, in silico and nano study of novel ethylquinolin-thiazolo-triazole in cervical cancer. Future Med Chem 2024; 16:751-767. [PMID: 38596902 PMCID: PMC11221538 DOI: 10.4155/fmc-2023-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/23/2024] [Indexed: 04/11/2024] Open
Abstract
Aim: p-Toluenesulfonic acid-(PTSA) and grinding-induced novel synthesis of ethylquinolin-thiazolo-triazole derivatives was performed using green chemistry. Materials & methods: Development of a nanoconjugate drug-delivery system of ethylquinolin-thiazolo-triazole was carried out with D-α-tocopheryl polyethylene glycol succinate (TPGS) and the formulation was further characterized by transmission electron microscopy, atomic force microscopy, dynamic light scattering and in vitro drug release assay. The effect of 3a nanoparticles was assessed against a cervical cancer cell line (HeLa) through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the effect on apoptosis was determined. Results & discussion: The 3a nanoparticles triggered the apoptotic mode of cell death after increasing the intracellular reactive oxygen level by enhancing cellular uptake of micelles. Furthermore, in silico studies revealed higher absorption, distribution, metabolism, elimination and toxicity properties and bioavailability of the enzyme tyrosine protein kinase. Conclusion: The 3a nanoparticles enhanced the therapeutic potential and have higher potential for targeted drug delivery against cervical cancer.
Collapse
Affiliation(s)
- Priyanka Sonker
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Rupen Tamang
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Abhishesh K Mehata
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Manisha Nidhar
- Amrita school of pharmacy, Amrita Vishwa Vidhyapeetham, AIMS, Health Science Campus, Kochi, 682041, India
| | - Vishal P Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Vipin Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Biplob Koch
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ashish K Tewari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
10
|
Wijesinghe TP, Kaya B, Gonzálvez MA, Harmer JR, Gholam Azad M, Bernhardt PV, Dharmasivam M, Richardson DR. Steric Blockade of Oxy-Myoglobin Oxidation by Thiosemicarbazones: Structure-Activity Relationships of the Novel PPP4pT Series. J Med Chem 2023; 66:15453-15476. [PMID: 37922410 DOI: 10.1021/acs.jmedchem.3c01612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The di-2-pyridylketone thiosemicarbazones demonstrated marked anticancer efficacy, prompting progression of DpC to clinical trials. However, DpC induced deleterious oxy-myoglobin oxidation, stifling development. To address this, novel substituted phenyl thiosemicarbazone (PPP4pT) analogues and their Fe(III), Cu(II), and Zn(II) complexes were prepared. The PPP4pT analogues demonstrated potent antiproliferative activity (IC50: 0.009-0.066 μM), with the 1:1 Cu:L complexes showing the greatest efficacy. Substitutions leading to decreased redox potential of the PPP4pT:Cu(II) complexes were associated with higher antiproliferative activity, while increasing potential correlated with increased redox activity. Surprisingly, there was no correlation between redox activity and antiproliferative efficacy. The PPP4pT:Fe(III) complexes attenuated oxy-myoglobin oxidation significantly more than the clinically trialed thiosemicarbazones, Triapine, COTI-2, and DpC, or earlier thiosemicarbazone series. Incorporation of phenyl- and styryl-substituents led to steric blockade, preventing approach of the PPP4pT:Fe(III) complexes to the heme plane and its oxidation. The 1:1 Cu(II):PPP4pT complexes were inert to transmetalation and did not induce oxy-myoglobin oxidation.
Collapse
Affiliation(s)
- Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Miguel A Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
11
|
Manakkadan V, Haribabu J, Palakkeezhillam VNV, Rasin P, Mandal M, Kumar VS, Bhuvanesh N, Udayabhaskar R, Sreekanth A. Synthesis and characterization of N-substituted thiosemicarbazones: DNA/BSA binding, molecular docking, anticancer activity, ADME study and computational investigations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
12
|
Bialves TS, Bastos Junior CLQ, Cordeiro MF, Boyle RT. Snake venom, a potential treatment for melanoma. A systematic review. Int J Biol Macromol 2023; 231:123367. [PMID: 36690229 DOI: 10.1016/j.ijbiomac.2023.123367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Despite advances in treating patients with melanoma, there are still many treatment challenges to overcome. Studies with snake venom-derived proteins/peptides describe their binding potential, and inhibition of some proliferative mechanisms in melanoma. The combined use of these compounds with current therapies could be the strategic gap that will help us discover more effective treatments for melanoma. The present study aimed to carry out a systematic review identifying snake venom proteins and peptides described in the literature with antitumor, antimetastatic, or antiangiogenic effects on melanoma and determine the mechanisms of action that lead to these anti-tumor effects. Snake venoms contain proteins and peptides which are antiaggregant, antimetastatic, and antiangiogenic. The in vivo results are encouraging, considering the reduction of metastases and tumor size after treatment. In addition to these results, it was reported that these venom compounds could act in combination with chemotherapeutics (Acurhagin-C; Macrovipecetin), sensitizing and preparing tumor cells for treatment. There is a consensus that snake venom is a promising strategy for the improvement of antimelanoma therapies, but it has been little explored in the current context, combined with inhibitors, immunotherapy or tumor microenvironment, for example. We suggest Lebein as a candidate for combination therapy with BRAF inhibitors.
Collapse
Affiliation(s)
- Tatiane Senna Bialves
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil.
| | - Claudio L Q Bastos Junior
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil
| | - Marcos Freitas Cordeiro
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Universidade do Oeste de Santa Catarina - UNOESC, Rua Roberto Trompovski 224, Joaçaba, Santa Catarina, CEP 89600-000, Brazil.
| | - Robert Tew Boyle
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul 96203-900, Brazil
| |
Collapse
|
13
|
Novel cobalt complexes of pyridine-based NNS donor thiosemicarbazones: Synthesis, X-ray characterization, DFT calculations, Hirshfeld surface analysis, and molecular docking study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Yeganeh FE, Yeganeh AE, Far BF, Mansouri A, Sibuh BZ, Krishnan S, Pandit S, Alsanie WF, Thakur VK, Gupta PK. Synthesis and Characterization of Tetracycline Loaded Methionine-Coated NiFe2O4 Nanoparticles for Anticancer and Antibacterial Applications. NANOMATERIALS 2022; 12:nano12132286. [PMID: 35808122 PMCID: PMC9268285 DOI: 10.3390/nano12132286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023]
Abstract
In the present study, nickel ferrite (NiFe2O4)-based smart magnetic nanoparticles were fabricated and coated with methionine. Physiochemical characterization of the obtained Met-NiFe2O4 nanoparticles revealed the presence of methionine coating over the nanoparticle surface. Drug release study indicated that Tet-Met-NiFe2O4 nanoparticles possess pH-responsive controlled drug release behavior for tetracycline (Tet). The drug loading content for Tet was found to be 0.27 mg/L of nanoparticles. In vitro cytotoxicity test showed that the Met-NiFe2O4 nanoparticles is biocompatible. Moreover, this magnetic nanostructured material shown strong anticancer property as these nanomaterials significantly reduced the viability of A375 cells when compared to free Tet solution. In addition, Tet-Met-NiFe2O4 nanoparticles also showed strong antibacterial activity against different bacterial pathogens.
Collapse
Affiliation(s)
- Faten Eshrati Yeganeh
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Amir Eshrati Yeganeh
- Department of Microbiology, Noor Dahesh Institute of Higher Education, Meymeh 45789427600, Iran;
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran;
| | - Afsoun Mansouri
- School of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran;
| | - Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Plot no. 32–34, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India;
| | | | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Plot no. 32–34, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India;
| | - Walaa F. Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
- Centre for Research & Developments, Chandigarh University, Mohali 140413, Punjab, India
- Correspondence: (V.K.T.); (P.K.G.)
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Plot no. 32–34, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India;
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
- Correspondence: (V.K.T.); (P.K.G.)
| |
Collapse
|
15
|
Xu YS, Chigan JZ, Li JQ, Ding HH, Sun LY, Liu L, Hu Z, Yang KW. Hydroxamate and thiosemicarbazone: Two highly promising scaffolds for the development of SARS-CoV-2 antivirals. Bioorg Chem 2022; 124:105799. [PMID: 35462235 PMCID: PMC9014651 DOI: 10.1016/j.bioorg.2022.105799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 01/09/2023]
Abstract
The emerging COVID-19 pandemic generated by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has severely threatened human health. The main protease (Mpro) of SARS-CoV-2 is promising target for antiviral drugs, which plays a vital role for viral duplication. Development of the inhibitor against Mpro is an ideal strategy to combat COVID-19. In this work, twenty-three hydroxamates 1a-i and thiosemicarbazones 2a-n were identified by FRET screening to be the potent inhibitors of Mpro, which exhibited more than 94% (except 1c) and more than 69% inhibition, and an IC50 value in the range of 0.12-31.51 and 2.43-34.22 μM, respectively. 1a and 2b were found to be the most effective inhibitors in the hydroxamates and thiosemicarbazones, with an IC50 of 0.12 and 2.43 μM, respectively. Enzyme kinetics, jump dilution and thermal shift assays revealed that 2b is a competitive inhibitor of Mpro, while 1a is a time-dependently inhibitor; 2b reversibly but 1a irreversibly bound to the target; the binding of 2b increased but 1a decreased stability of the target, and DTT assays indicate that 1a is the promiscuous cysteine protease inhibitor. Cytotoxicity assays showed that 1a has low, but 2b has certain cytotoxicity on the mouse fibroblast cells (L929). Docking studies revealed that the benzyloxycarbonyl carbon of 1a formed thioester with Cys145, while the phenolic hydroxyl oxygen of 2b formed H-bonds with Cys145 and Asn142. This work provided two promising scaffolds for the development of Mpro inhibitors to combat COVID-19.
Collapse
Affiliation(s)
- Yin-Sui Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jia-Zhu Chigan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jia-Qi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Huan-Huan Ding
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Le-Yun Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Lu Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Zhenxin Hu
- Suzhou Genevide Biotechnology Co., Ltd, Suzhou 215123, PR China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|