1
|
Teymouri S, Pourhajibagher M, Bahador A. The relationship between the skin microbiome and probiotics in the healing of burn injuries. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01262-8. [PMID: 40227389 DOI: 10.1007/s12223-025-01262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
The relationship between the skin microbiome and probiotics in the healing of burn injuries has garnered significant attention in recent years. Burn injuries disrupt the delicate balance of the skin microbiome, leading to complications in the healing process. Probiotic therapies have emerged as promising interventions to restore microbial balance, inhibit biofilm formation, and accelerate tissue repair. Probiotics may also mitigate the risk of antibiotic-resistant infections, which is a major concern in burn units. By enhancing immune responses and stimulating the production of antimicrobial peptides, probiotics can effectively combat bacterial colonization and prevent the emergence of drug-resistant strains. A combination of probiotics with other therapies, such as phages or nanoparticles, holds significant promise for enhancing burn healing. This approach can effectively treat burn wounds by promoting wound healing synergy, preventing infection, modulating the immune response, and disrupting biofilms. Overall, the relationship between the skin microbiome and probiotics in burn wound healing has substantial potential to advance the field of burn wound management.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
2
|
Kreouzi M, Theodorakis N, Nikolaou M, Feretzakis G, Anastasiou A, Kalodanis K, Sakagianni A. Skin Microbiota: Mediator of Interactions Between Metabolic Disorders and Cutaneous Health and Disease. Microorganisms 2025; 13:161. [PMID: 39858932 PMCID: PMC11767725 DOI: 10.3390/microorganisms13010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic disorders, including type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome, are systemic conditions that profoundly impact the skin microbiota, a dynamic community of bacteria, fungi, viruses, and mites essential for cutaneous health. Dysbiosis caused by metabolic dysfunction contributes to skin barrier disruption, immune dysregulation, and increased susceptibility to inflammatory skin diseases, including psoriasis, atopic dermatitis, and acne. For instance, hyperglycemia in T2DM leads to the formation of advanced glycation end products (AGEs), which bind to the receptor for AGEs (RAGE) on keratinocytes and immune cells, promoting oxidative stress and inflammation while facilitating Staphylococcus aureus colonization in atopic dermatitis. Similarly, obesity-induced dysregulation of sebaceous lipid composition increases saturated fatty acids, favoring pathogenic strains of Cutibacterium acnes, which produce inflammatory metabolites that exacerbate acne. Advances in metabolomics and microbiome sequencing have unveiled critical biomarkers, such as short-chain fatty acids and microbial signatures, predictive of therapeutic outcomes. For example, elevated butyrate levels in psoriasis have been associated with reduced Th17-mediated inflammation, while the presence of specific Lactobacillus strains has shown potential to modulate immune tolerance in atopic dermatitis. Furthermore, machine learning models are increasingly used to integrate multi-omics data, enabling personalized interventions. Emerging therapies, such as probiotics and postbiotics, aim to restore microbial diversity, while phage therapy selectively targets pathogenic bacteria like Staphylococcus aureus without disrupting beneficial flora. Clinical trials have demonstrated significant reductions in inflammatory lesions and improved quality-of-life metrics in patients receiving these microbiota-targeted treatments. This review synthesizes current evidence on the bidirectional interplay between metabolic disorders and skin microbiota, highlighting therapeutic implications and future directions. By addressing systemic metabolic dysfunction and microbiota-mediated pathways, precision strategies are paving the way for improved patient outcomes in dermatologic care.
Collapse
Affiliation(s)
- Magdalini Kreouzi
- Department of Internal Medicine, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Athens, Greece;
| | - Nikolaos Theodorakis
- NT-CardioMetabolics, Clinic for Metabolism and Athletic Performance, 47 Tirteou Str., 17564 Palaio Faliro, Greece;
- Department of Cardiology & Preventive Cardiology Outpatient Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece;
- School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece
| | - Maria Nikolaou
- Department of Cardiology & Preventive Cardiology Outpatient Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece;
| | - Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece
| | - Athanasios Anastasiou
- Biomedical Engineering Laboratory, National Technical University of Athens, 15780 Athens, Greece;
| | - Konstantinos Kalodanis
- Department of Informatics & Telematics, Harokopio University of Athens, 17676 Kallithea, Greece;
| | - Aikaterini Sakagianni
- Intensive Care Unit, Sismanogleio General Hospital, 37 Sismanogleiou Str., 15126 Marousi, Greece
| |
Collapse
|
3
|
Joura MI, Jobbágy A, Dunai ZA, Makra N, Bánvölgyi A, Kiss N, Sárdy M, Sándor SE, Holló P, Ostorházi E. Characteristics of the Stool, Blood and Skin Microbiome in Rosacea Patients. Microorganisms 2024; 12:2667. [PMID: 39770869 PMCID: PMC11728485 DOI: 10.3390/microorganisms12122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Several research groups have confirmed that in the pathogenesis of the chronic inflammatory skin disorder rosacea, the composition of the skin and fecal microbiome of affected patients differs from that of healthy individuals. We studied the stool, blood and skin microbiomes of rosacea and control patients using 16S rRNA sequencing. Our goals were to determine 1. whether the microbiome characteristics of rosacea patients differ from that of healthy individuals, 2. whether the change experienced on the skin can be confirmed by alterations in the stool microbiome through the mediation of the blood and 3. whether the metabolic activity of the changed skin, blood or fecal microbiome can play a role in the pathogenesis of rosacea. The rosacea skin microbiome differed significantly from the healthy skin microbiome in both alpha and beta diversity, as well as in the abundance of the genera. Only a few genera abundances differed significantly in stool and blood samples. The most significant representatives of the rosacea skin microbiome, Staphylococcus, Cutibacterium, Corynebacterium and Neisseria, cannot be derived from the feces or blood. The metabolic pathways associated with healthy fecal microbiome contributed to the production of anti-inflammatory short-chain fatty acids. While the increased production of adenosylcobalamin, L-isoleucine and thiazole by the microbiome of healthy skin appeared to have a protective effect, the excessive heme and H2S production experienced in rosacea skin likely contribute to the deterioration of the pathology.
Collapse
Affiliation(s)
- Marie Isolde Joura
- Department of Dermatology, Venerology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
- Károly Rácz Doctoral School of Clinical Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Antal Jobbágy
- Department of Dermatology, Venerology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| | - Zsuzsanna A. Dunai
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| | - Nóra Makra
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| | - András Bánvölgyi
- Department of Dermatology, Venerology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| | - Norbert Kiss
- Department of Dermatology, Venerology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| | - Miklós Sárdy
- Department of Dermatology, Venerology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| | - Sarolta Eszter Sándor
- Department of Dermatology, Pál Heim National Institute of Pediatrics, 1089 Budapest, Hungary
| | - Péter Holló
- Department of Dermatology, Venerology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| | - Eszter Ostorházi
- Department of Dermatology, Venerology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| |
Collapse
|
4
|
Gao S, Fan H, Wang T, Chen J. Identification of psoriasis-associated immune marker G3BP2 through single-cell RNA sequencing and meta analysis. Immunology 2024; 173:730-747. [PMID: 39267394 DOI: 10.1111/imm.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/02/2024] [Indexed: 09/17/2024] Open
Abstract
Psoriasis is a chronic skin disease with an increasing prevalence each year. However, the mechanisms underlying its onset and progression remain unclear, and effective therapeutic targets are lacking. Therefore, we employs an innovative approach by combining single-cell RNA sequencing (scRNA-seq) with meta-analysis. This not only elucidates the potential mechanisms of psoriasis at the cellular level but also identifies immunoregulatory marker genes that play a statistically significant role in driving psoriasis progression through comprehensive analysis of multiple datasets. Skin tissue samples from 12 psoriasis patients underwent scRNA-seq, followed by quality control, filtering, PCA dimensionality reduction, and tSNE clustering analysis to identify T cell subtypes and differentially expressed genes (DEGs) in psoriatic skin tissue. Next, three psoriasis datasets were standardised and merged to identify differentially expressed genes (DEGs). Subsequently, weighted gene co-expression network analysis (WGCNA) was applied for clustering analysis of gene co-expression network modules and to assess the correlation between these modules and DEGs. Least absolute shrinkage and selection operator (LASSO) regression and receiver operating characteristic (ROC) curve analyses were conducted to select disease-specific genes and evaluate their diagnostic value. Single-cell data revealed nine cell types in psoriatic skin tissue, with seven T cell subtypes identified. Intersection analysis identified ADAM8 and G3BP2 as key genes. Through the integration of scRNA-seq and Meta analysis, we identified the immunoregulatory marker gene G3BP2, which is associated with the onset and progression of psoriasis and holds clinical significance. G3BP2 is speculated to promote the development of psoriasis by increasing the proportion of CD8+ T cells.
Collapse
Affiliation(s)
- Shuangshuang Gao
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Huayu Fan
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Ting Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jinguang Chen
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
5
|
Shirkhan F, Safaei F, Mirdamadi S, Zandi M. The Role of Probiotics in Skin Care: Advances, Challenges, and Future Needs. Probiotics Antimicrob Proteins 2024; 16:2132-2149. [PMID: 38965196 DOI: 10.1007/s12602-024-10319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
The skin, being the largest organ in the human body, plays a pivotal role in safeguarding the body against invasive pathogens. Therefore, it is essential to reinforce and protect this vital organ. Current research supports the impact of probiotics on skin health and their ability to alleviate various skin disorders. However, the effectiveness and probable side effects of probiotics in skin care remain a subject of debate, necessitating further investigation and analysis. Hence, this study aims to highlight existing gaps and future needs in the current research on probiotics in skin care and pave the way for future investigations. Therefore, we scrutinized the effects of oral (fermented foods and dietary supplements) and non-oral/topical probiotics on skin care, and the mechanism of probiotics that affect skin health. The results of most studies showed that fermented foods containing probiotics, particularly dairy products, positively impact skin health. The research results regarding the efficacy of probiotic supplements and live strains in treating skin disorders show promising potential. However, safety evaluations are crucial, to identify any potential adverse effects. While research has identified numerous potential mechanisms by which probiotics may influence skin health, a complete understanding of their precise mode of action remains elusive. However, it seems that probiotics can exert their positive effects through the gut-skin and gut-skin-brain axis on the human body. Therefore, following the identification of safe probiotics, additional studies should be carried out to establish optimal dosages, potential side effects, suitable regulatory guidelines, and validation methods.
Collapse
Affiliation(s)
- Faezeh Shirkhan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, 19496-35881, Iran
| | - Fatemeh Safaei
- Iranian Research Organization for Science and Technology, Microbial Biotechnology Student in Iranian Research Organization for Science and Technology, Microbial biotechnology, Tehran, 3353511, Iran
| | - Saeed Mirdamadi
- Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, 33131-93685, Iran.
| | - Mohammad Zandi
- Department of Agriculture, Iranian Research Organization for Science and Technology (IROST), Tehran, 3353511, Iran.
| |
Collapse
|
6
|
Chen M, Wang R, Wang T. Gut microbiota and skin pathologies: Mechanism of the gut-skin axis in atopic dermatitis and psoriasis. Int Immunopharmacol 2024; 141:112658. [PMID: 39137625 DOI: 10.1016/j.intimp.2024.112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
Atopic dermatitis (AD) and psoriasis are chronic skin diseases with a global impact, posing significant challenges to public health systems and severely affecting patients' quality of life. This review delves into the key role of the gut microbiota in these diseases, emphasizing the importance of the gut-skin axis in inflammatory mediators and immune regulation and revealing a complex bidirectional communication system. We comprehensively assessed the pathogenesis, clinical manifestations, and treatment strategies for AD and psoriasis, with a particular focus on how the gut microbiota and their metabolites influence disease progression via the gut-skin axis. In addition, personalized treatment plans based on individual patient microbiome characteristics have been proposed, offering new perspectives for future treatment approaches. We call for enhanced interdisciplinary cooperation to further explore the interactions between gut microbiota and skin diseases and to assess the potential of drugs and natural products in modulating the gut-skin axis, aiming to advance the treatment of skin diseases.
Collapse
Affiliation(s)
- Meng Chen
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Rui Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| | - Ting Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| |
Collapse
|
7
|
Podbielski A, Köller T, Warnke P, Barrantes I, Kreikemeyer B. Whole genome sequencing distinguishes skin colonizing from infection-associated Cutibacterium acnes isolates. Front Cell Infect Microbiol 2024; 14:1433783. [PMID: 39512589 PMCID: PMC11540793 DOI: 10.3389/fcimb.2024.1433783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Cutibacterium acnes can both be a helpful colonizer of the human skin as well as the causative agent of acne and purulent infections. Until today, it is a moot point whether there are C. acnes strains exclusively devoted to be part of the skin microbiome and others, that carry special features enabling them to cause disease. So far, the search for the molecular background of such diverse behavior has led to inconsistent results. Methods In the present study, we prospectively collected C. acnes strains from 27 infected persons and 18 healthy controls employing rigid selection criteria to ensure their role as infectious agent or colonizer. The genome sequences from these strains were obtained and carefully controlled for quality. Results Deduced traditional phylotyping assigned almost all superficial isolates to type IA1, while the clinical strains were evenly distributed between types IA1, IB, and II. Single locus sequence typing (SLST) showed a predominance of A1 type for the control strains, whereas 56% of the clinical isolates belonged to types A1, H1 and K8. Pangenome analysis from all the present strains and 30 published genomes indicated the presence of an open pangenome. Except for three isolates, the colonizing strains clustered in clades separate from the majority of clinical strains, while 4 clinical strains clustered with the control strains. Identical results were obtained by a single nucleotide polymorphism (SNP) analysis. However, there were no significant differences in virulence gene contents in both groups. Discussion Genome-wide association studies (GWAS) from both the pangenome and SNP data consistently showed genomic differences between both groups located in metabolic pathway and DNA repair genes. Thus, the different behavior of colonizing and infectious C. acnes strains could be due to special metabolic capacities or flexibilities rather than specific virulence traits.
Collapse
Affiliation(s)
- Andreas Podbielski
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Thomas Köller
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Philipp Warnke
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Israel Barrantes
- Research Group Translational Bioinformatics, Institute for Biostatistics and Informatics in Medicine and Aging Research, Rostock University Medical Center, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
8
|
Tamer F, Kekilli M. Exploring the therapeutic potential of topical probiotics in dermatological diseases: a comprehensive review of clinical studies. J Dtsch Dermatol Ges 2024; 22:1195-1204. [PMID: 39164814 DOI: 10.1111/ddg.15465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/23/2024] [Indexed: 08/22/2024]
Abstract
The gastrointestinal tract may contribute to the regulation of systemic inflammation and skin diseases due to the balance between the pathogenic, opportunistic, and beneficial bacterial species it contains. External supplementation of beneficial bacteria, besides its known positive effect in the treatment of digestive system diseases, also has different favorable effects such as accelerated wound healing, suppression of inflammation, lower infection risk, and reduced antibiotic requirement. It has been reported that oral use of probiotics may be effective in the treatment of skin diseases such as acne, psoriasis, and atopic dermatitis. Furthermore, topical administration of probiotics may create a positive bacterial balance, eliminate pathological conditions, and thus have a favorable impact on the management of skin diseases. Interest in the effect of the skin microbiome and topical probiotics in the treatment of skin diseases has increased recently. Herein, 21 clinical studies and a case report in the PubMed database on the use of topical probiotics in dermatological diseases were evaluated.
Collapse
Affiliation(s)
- Funda Tamer
- Department of Dermatology, Gazi University School of Medicine, Ankara, Turkey
| | - Murat Kekilli
- Department of Gastroenterology, Gazi University School of Medicine, Department of Gastroenterology, Ankara, Turkey
| |
Collapse
|
9
|
Polak K, Muszyński T, Frątczak A, Meznerics F, Bánvölgyi A, Kiss N, Miziołek B, Bergler-Czop B. Study of gut microbiome alterations in plaque psoriasis patients compared to healthy individuals. Postepy Dermatol Alergol 2024; 41:378-387. [PMID: 39290901 PMCID: PMC11404103 DOI: 10.5114/ada.2024.142394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/15/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Many studies have shown significant alterations in the gut microbiome of patients with psoriasis compared to healthy controls. Aim The primary objective of the current research was to explore the impact of gut microbiome composition on the progression and severity of plaque psoriasis. Material and methods A total of 20 patients with moderate-to-severe psoriasis and 20 healthy individuals were recruited and provided a stool sample to assess the gut microbiome. After the samples were prepared according to the NGS library preparation workflow, they were sequenced using the Illumina platform and the report was generated that underwent statistical analysis. Results The microbiome profiles of psoriasis patients exhibited significant differences compared to healthy controls as evidenced by the statistical analysis of various bacterial genera, with the median abundance significantly lower in psoriasis patients compared to healthy controls (p = 0.033). The analysis of the Firmicutes-to-Bacteroidetes ratio, a commonly evaluated marker of dysbiosis, did not reach statistical significance (p = 0.239). However, there was a noticeable trend towards a higher median ratio in psoriasis patients compared to healthy controls. The ratio did not show significant associations with PASI or BSA but trends towards significance with DLQI (B = -12.11, p = 0.095). Conclusions Overall, the above findings underscore the importance of the gut microbiome in psoriasis and suggest that modulation of specific bacterial genera, especially that with significant differences, could be a potential strategy for therapeutic intervention. Targeting these depleted genera through microbiome-based interventions, such as probiotic supplementation or faecal microbiota transplantation, could potentially help to restore gut homeostasis and alleviate the inflammatory burden in psoriasis.
Collapse
Affiliation(s)
- Karina Polak
- Department of Dermatology, Medical University of Silesia, Katowice, Poland
- Doctoral School of the Medical University of Silesia, Katowice, Poland
| | - Tomasz Muszyński
- Brothers Hospitallers of Saint John of God Hospital, Krakow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Krakow, Poland
| | | | - Fanni Meznerics
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Bartosz Miziołek
- Department of Dermatology, Medical University of Silesia, Katowice, Poland
| | - Beata Bergler-Czop
- Department of Dermatology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
10
|
Gamal NA, Shoaib MA, Farag AG, Stark R, Tso S. A non-inferiority clinical trial comparing probiotics and oral corticosteroids for the management of acute exacerbation of atopic dermatitis patients. SKIN HEALTH AND DISEASE 2024; 4:e373. [PMID: 38846682 PMCID: PMC11150755 DOI: 10.1002/ski2.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
A prospective controlled pilot study on the feasibility of utilization of a probiotic mixture for management of acute exacerbation of atopic dermatitis (AD). Patients were allocated to either standard of care (SOC) therapy with tapering dose of steroids or a probiotic mixture over 3 weeks. After the 3-week intervention, patients on steroids achieved significantly higher clinical response rates and significantly deeper response as measured by the change in SCORAD score. No gut microbiome changes could be appreciated in either group after the treatment period. We could conclude that probiotics cannot replace SOC therapy for the management of acute exacerbation of AD.
Collapse
Affiliation(s)
- Nahla A. Gamal
- Department of DermatologyMenoufia UniversityShebin ElkomEgypt
- South Warwickshire NHS Foundation TrustWarwickUK
| | | | - Azza G. Farag
- Department of DermatologyMenoufia UniversityShebin ElkomEgypt
| | - Richard Stark
- Bioinformatics Research Technology PlatformUniversity of WarwickCoventryUK
| | - Simon Tso
- South Warwickshire NHS Foundation TrustWarwickUK
| |
Collapse
|
11
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
12
|
Zhang XE, Zheng P, Ye SZ, Ma X, Liu E, Pang YB, He QY, Zhang YX, Li WQ, Zeng JH, Guo J. Microbiome: Role in Inflammatory Skin Diseases. J Inflamm Res 2024; 17:1057-1082. [PMID: 38375021 PMCID: PMC10876011 DOI: 10.2147/jir.s441100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
As the body's largest organ, the skin harbors a highly diverse microbiota, playing a crucial role in resisting foreign pathogens, nurturing the immune system, and metabolizing natural products. The dysregulation of human skin microbiota is implicated in immune dysregulation and inflammatory responses. This review delineates the microbial alterations and immune dysregulation features in common Inflammatory Skin Diseases (ISDs) such as psoriasis, rosacea, atopic dermatitis(AD), seborrheic dermatitis(SD), diaper dermatitis(DD), and Malassezia folliculitis(MF).The skin microbiota, a complex and evolving community, undergoes changes in composition and function that can compromise the skin microbial barrier. These alterations induce water loss and abnormal lipid metabolism, contributing to the onset of ISDs. Additionally, microorganisms release toxins, like Staphylococcus aureus secreted α toxins and proteases, which may dissolve the stratum corneum, impairing skin barrier function and allowing entry into the bloodstream. Microbes entering the bloodstream activate molecular signals, leading to immune disorders and subsequent skin inflammatory responses. For instance, Malassezia stimulates dendritic cells(DCs) to release IL-12 and IL-23, differentiating into a Th17 cell population and producing proinflammatory mediators such as IL-17, IL-22, TNF-α, and IFN-α.This review offers new insights into the role of the human skin microbiota in ISDs, paving the way for future skin microbiome-specific targeted therapies.
Collapse
Affiliation(s)
- Xue-Er Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Pai Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Sheng-Zhen Ye
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 6610072, People’s Republic of China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - E Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Yao-Bin Pang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Qing-Ying He
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Yu-Xiao Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Wen-Quan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Jin-Hao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| | - Jing Guo
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 6610072, People’s Republic of China
| |
Collapse
|
13
|
Truglio M, Sivori F, Cavallo I, Abril E, Licursi V, Fabrizio G, Cardinali G, Pignatti M, Toma L, Valensise F, Cristaudo A, Pimpinelli F, Di Domenico EG. Modulating the skin mycobiome-bacteriome and treating seborrheic dermatitis with a probiotic-enriched oily suspension. Sci Rep 2024; 14:2722. [PMID: 38302693 PMCID: PMC10834955 DOI: 10.1038/s41598-024-53016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
Seborrheic dermatitis (SD) affects 2-5% of the global population, with imbalances in the skin microbiome implicated in its development. This study assessed the impact of an oily suspension containing Lactobacillus crispatus P17631 and Lacticaseibacillus paracasei I1688 (termed EUTOPLAC) on SD symptoms and the skin mycobiome-bacteriome modulation. 25 SD patients were treated with EUTOPLAC for a week. Symptom severity and skin mycobiome-bacteriome changes were measured at the start of the treatment (T0), after seven days (T8), and three weeks post-treatment (T28). Results indicated symptom improvement post-EUTOPLAC, with notable reductions in the Malassezia genus. Concurrently, bacterial shifts were observed, including a decrease in Staphylococcus and an increase in Lactobacillus and Lacticaseibacillus. Network analysis highlighted post-EUTOPLAC instability in fungal and bacterial interactions, with increased negative correlations between Malassezia and Lactobacillus and Lacticaseibacillus genera. The study suggests EUTOPLAC's potential as a targeted SD treatment, reducing symptoms and modulating the mycobiome-bacteriome composition.
Collapse
Affiliation(s)
- Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
| | - Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
| | - Elva Abril
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology, National Research Council of Italy, 00185, Rome, Italy
| | - Giorgia Fabrizio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome, 00185, Rome, Italy
| | - Giorgia Cardinali
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
| | | | - Luigi Toma
- Medical Directorate, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Floriana Valensise
- Clinical Dermatology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
| | - Antonio Cristaudo
- Clinical Dermatology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy.
| | - Enea Gino Di Domenico
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome, 00185, Rome, Italy.
| |
Collapse
|
14
|
Maitz J, Merlino J, Rizzo S, McKew G, Maitz P. Burn wound infections microbiome and novel approaches using therapeutic microorganisms in burn wound infection control. Adv Drug Deliv Rev 2023; 196:114769. [PMID: 36921627 DOI: 10.1016/j.addr.2023.114769] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/20/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Affiliation(s)
- J Maitz
- Department of Burns & Reconstructive Surgery, Concord Repatriation General Hospital, Australia; Burns & Reconstructive Surgery Research Group, ANZAC Research Institute, Concord Repatriation General Hospital, Australia; Faculty of Medicine & Health, University of Sydney, Australia.
| | - J Merlino
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, Australia; Faculty of Medicine & Health, University of Sydney, Australia
| | - S Rizzo
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, Australia
| | - G McKew
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, Australia; Faculty of Medicine & Health, University of Sydney, Australia
| | - P Maitz
- Department of Burns & Reconstructive Surgery, Concord Repatriation General Hospital, Australia; Burns & Reconstructive Surgery Research Group, ANZAC Research Institute, Concord Repatriation General Hospital, Australia; Faculty of Medicine & Health, University of Sydney, Australia
| |
Collapse
|
15
|
Editorial of Special Issue “Pharmacomicrobiomics in Non-Communicable Disease”. Biomedicines 2022; 10:biomedicines10071605. [PMID: 35884910 PMCID: PMC9313195 DOI: 10.3390/biomedicines10071605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
|
16
|
Sathikulpakdee S, Kanokrungsee S, Vitheejongjaroen P, Kamanamool N, Udompataikul M, Taweechotipatr M. The efficacy of probiotic-derived lotion from Lactobacillus paracasei MSMC 39-1 in mild to moderate acne vulgaris, randomized controlled trial. J Cosmet Dermatol 2022; 21:5092-5097. [PMID: 35384257 DOI: 10.1111/jocd.14971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Probiotics provide benefits for reducing acne. Previous studies showed an anti-inflammatory effect of Lactobacillus paracasei. However, the clinical evidence of topical probiotic lotion and acne treatment is still lacking. OBJECTIVE To evaluate the efficacy and safety of probiotic-derived lotion compared to 2.5 % benzoyl peroxide in the treatment of mild to moderate acne vulgaris. METHODS Topical probiotic-derived lotion was formulated from cell-free supernatant of L. paracasei MSMC 39-1. In vivo study showed the ability of the supernatant to inhibit both antibiotic-resistance and susceptibility strains of C. acnes and inhibit tumor necrosis factor-α. The patients with mild to moderate acne vulgaris on the face were randomized to receive topical probiotic-derived lotion or 2.5 % benzoyl peroxide. Acne lesion counts, erythema index, and side effects were assessed after 2 and 4 weeks of treatment. RESULTS One hundred and four acne vulgaris patients were enrolled. After four weeks of treatment, the inflammatory acne lesion counts and erythema index significantly decreased compared to baseline in both the probiotic lotion group and 2.5 % benzoyl peroxide group (p < 0.001 in both groups) without statistically significant difference between the two groups (p > 0.05). However, the comedones were not affected in both groups. Four patients (7.69%) treated with probiotic-derived lotion and 14 patients (26.92%) treated with 2.5% benzoyl peroxide reported treatment-associated side effects. CONCLUSION Probiotic-derived lotion is safe and effective for treating mild to moderate acne vulgaris, a comparable outcome with 2.5% benzoyl peroxide. It could be an alternative treatment of acne with more minor side effects.
Collapse
Affiliation(s)
- Sunattha Sathikulpakdee
- Skin Center, Faculty of medicine, Srinakharinwirot University, 114 Sukhumvit 21, Bangkok, Thailand, 10110
| | - Silada Kanokrungsee
- Skin Center, Faculty of medicine, Srinakharinwirot University, 114 Sukhumvit 21, Bangkok, Thailand, 10110.,Center of excellence in probiotics, Strategic wisdom and research institute, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Porntipha Vitheejongjaroen
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, 114 Sukhumvit 21, Bangkok, Thailand, 10110
| | - Nanticha Kamanamool
- Department of Preventive and Social Medicine, Srinakharinwirot University, 114 Sukhumvit 21, Bangkok, Thailand, 10110
| | - Montree Udompataikul
- Skin Center, Faculty of medicine, Srinakharinwirot University, 114 Sukhumvit 21, Bangkok, Thailand, 10110
| | - Malai Taweechotipatr
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, 114 Sukhumvit 21, Bangkok, Thailand, 10110.,Center of excellence in probiotics, Strategic wisdom and research institute, Srinakharinwirot University, Bangkok, 10110, Thailand
| |
Collapse
|
17
|
Advances in Microbiome-Derived Solutions and Methodologies Are Founding a New Era in Skin Health and Care. Pathogens 2022; 11:pathogens11020121. [PMID: 35215065 PMCID: PMC8879973 DOI: 10.3390/pathogens11020121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
The microbiome, as a community of microorganisms and their structural elements, genomes, metabolites/signal molecules, has been shown to play an important role in human health, with significant beneficial applications for gut health. Skin microbiome has emerged as a new field with high potential to develop disruptive solutions to manage skin health and disease. Despite an incomplete toolbox for skin microbiome analyses, much progress has been made towards functional dissection of microbiomes and host-microbiome interactions. A standardized and robust investigation of the skin microbiome is necessary to provide accurate microbial information and set the base for a successful translation of innovations in the dermo-cosmetic field. This review provides an overview of how the landscape of skin microbiome research has evolved from method development (multi-omics/data-based analytical approaches) to the discovery and development of novel microbiome-derived ingredients. Moreover, it provides a summary of the latest findings on interactions between the microbiomes (gut and skin) and skin health/disease. Solutions derived from these two paths are used to develop novel microbiome-based ingredients or solutions acting on skin homeostasis are proposed. The most promising skin and gut-derived microbiome interventional strategies are presented, along with regulatory, safety, industrial, and technical challenges related to a successful translation of these microbiome-based concepts/technologies in the dermo-cosmetic industry.
Collapse
|