1
|
Ghiyasimoghaddam N, Shayan N, Mirkatuli HA, Baghbani M, Ameli N, Ashari Z, Mohtasham N. Does circulating tumor DNA apply as a reliable biomarker for the diagnosis and prognosis of head and neck squamous cell carcinoma? Discov Oncol 2024; 15:427. [PMID: 39259454 PMCID: PMC11390992 DOI: 10.1007/s12672-024-01308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Oral cavity cancer is the most common type of head and neck cancer. There is no definitive standard diagnosis, prognosis, or treatment response biomarker panel based on simple, specific, non-invasive, and reliable methods for head and neck squamous cell carcinoma (HNSCC) patients. On the other hand, the frequent post-treatment biopsies make it challenging to discriminate residual disease or recurrent tumors following postoperative reparative and post-radiation changes. Saliva, blood plasma, and serum samples were commonly used to monitor HNSCC through liquid biopsies. Based on the evidence, the most prominent molecular-based fluid biomarker, such as circulating tumor DNA (ctDNA), has potential applications for early cancer diagnosis, screening, patient management, and surveillance. ctDNA showed genomic and epigenomic changes and the status of human papillomavirus (HPV) with the real-time monitoring of tumor status through cancer therapy. Due to the intra and inter-tumor heterogeneity of tumor cells like cancer stem cells (CSCs) and tumor microenvironment (TME) in HNSCC, the tiny tissue biopsy cannot reflect all genomic and transcriptomic abnormality. Most liquid biopsies are applied to detect circulating molecular biomarkers consisting of cell-free DNA (cfDNA), ctDNA, microRNA, mRNA, and exosome for monitoring tumor progression. Based on the results of previous studies, liquid biopsy can be applied for comprehensive multi-omic discovery by assessing the predictive value of ctDNA in both early and advanced cancers. Liquid biopsy can be used to evaluate molecular signature profiles in HNSCC patients, with great potential to help in early diagnosis, prognosis, surveillance, and treatment monitoring of tumors. These happen by designing longitudinal extensive cohort studies and the utility of organoid technology that promotes the context of personalized and precision cancer medicine.
Collapse
Affiliation(s)
- Negin Ghiyasimoghaddam
- Department of Emergency Medicine, Bohlool Hospital, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Navidreza Shayan
- Department of Medical Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | | - Nima Ameli
- Sinus and Surgical Endoscopic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeynab Ashari
- Department of Cellular and Molecular (Genetic), Faculty of Biology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, P.O. Box: 9177948959, Mashhad, Iran.
| |
Collapse
|
2
|
Nassar SI, Suk A, Nguyen SA, Adilbay D, Pang J, Nathan CAO. The Role of ctDNA and Liquid Biopsy in the Diagnosis and Monitoring of Head and Neck Cancer: Towards Precision Medicine. Cancers (Basel) 2024; 16:3129. [PMID: 39335101 PMCID: PMC11430155 DOI: 10.3390/cancers16183129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Recent data have shown a continued rise in the worldwide annual incidence and mortality rates of head and neck cancers. The present standard for diagnosis and monitoring for disease recurrence or progression involves clinical examination, imaging, and invasive biopsy techniques of lesions suspected of being malignant. In addition to limitations relating to cost, time, and patient discomfort, these methodologies have inherent inaccuracies for detecting recurrence. In view of these limitations, the analysis of patient bodily fluid samples via liquid biopsy proposes a cost-effective and convenient alternative, which provides insight on the biogenetic and biomolecular underpinnings of oncologic disease processes. The monitoring of biomarkers for head and neck cancer via liquid biopsy, including circulating tumor DNA, circulating tumor cells, and circulating cell-free RNA, has shown clinical utility in the screening, diagnosis, prognostication, and monitoring of patients with various forms of head and neck cancer. The present review will provide an update on the current literature examining the use of liquid biopsy in head and neck cancer care and the clinical applicability of potential biomarkers, with a focus on viral and non-viral circulating tumor DNA. Possible future avenues for research to address specific shortcomings of liquid biopsy will be discussed.
Collapse
Affiliation(s)
- Sami I. Nassar
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - Amber Suk
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| | - Shaun A. Nguyen
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - Dauren Adilbay
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - John Pang
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| | - Cherie-Ann O. Nathan
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| |
Collapse
|
3
|
Hanna GJ, Chang SSW, Siddiqui F, Bain PA, Takiar V, Ward MC, Shukla ME, Hu KS, Robbins J, Witek ME, Bakst R, Chandra RA, Galloway T, Margalit DN. Imaging and Biomarker Surveillance for Head and Neck Squamous Cell Carcinoma: A Systematic Review and American Radium Society Appropriate Use Criteria Statement. Int J Radiat Oncol Biol Phys 2024; 119:786-802. [PMID: 38168554 DOI: 10.1016/j.ijrobp.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Surveillance for survivors of head and neck cancer (HNC) is focused on early detection of recurrent or second primary malignancies. After initial restaging confirms disease-free status, the use of surveillance imaging for asymptomatic patients with HNC is controversial. Our objective was to comprehensively review literature pertaining to imaging and biomarker surveillance of asymptomatic patients treated for head and neck squamous cell carcinoma and to convene a multidisciplinary expert panel to provide appropriate use criteria for surveillance in representative clinical scenarios. The evidence base for the appropriate use criteria was gathered through a librarian-mediated search of literature published from 1990 to 2022 focused on surveillance imaging and circulating tumor-specific DNA for nonmetastatic head and neck squamous cell carcinoma using MEDLINE (Ovid), Embase, Web of Science Core Collection, and the Cochrane Central Register of Controlled Trials. The systematic review was reported according to PRISMA guidelines. Using the modified Delphi process, the expert panel voted on appropriate use criteria, providing recommendations for appropriate use of surveillance imaging and human papillomavirus (HPV) circulating tumor DNA. Of 5178 studies identified, 80 met inclusion criteria (5 meta-analyses/systematic reviews, 1 randomized control trial, 1 post hoc analysis, 25 prospective, and 48 retrospective cohort studies [with ≥50 patients]), reporting on 27,525 patients. No large, randomized, prospective trials examined whether asymptomatic patients who receive surveillance imaging or HPV circulating tumor DNA monitoring benefit from earlier detection of recurrence or second primary tumors in terms of disease-specific or quality-of-life outcomes. In the absence of prospective data, surveillance imaging for HNC survivors should rely on individualized recurrence-risk assessment accounting for initial disease staging, HPV disease status, and tobacco use history. There is an emerging surveillance role for circulating tumor biomarkers.
Collapse
Affiliation(s)
- Glenn J Hanna
- Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Steven Shih-Wei Chang
- Department of Otolaryngology Head and Neck Surgery, Henry Ford Cancer Institute and Hospital, Detroit, Michigan
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Cancer Institute and Hospital, Detroit, Michigan
| | - Paul A Bain
- Countway Library, Harvard Medical School, Boston, Massachusetts
| | - Vinita Takiar
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, Ohio
| | - Matthew C Ward
- Atrium Health Levine Cancer Institute Radiation Therapy Center, Charlotte, North Carolina
| | - Monica E Shukla
- Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kenneth S Hu
- New York University Langone Hospitals, New York, New York
| | - Jared Robbins
- Radiation Oncology, College of Medicine Tucson, University of Arizona, Tucson, Arizona
| | - Matthew E Witek
- University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard Bakst
- Mount Sinai Icahn School of Medicine, New York, New York
| | - Ravi A Chandra
- Mid-Atlantic Permanente Medical Group, Kaiser Permanente Health, Rockville, Maryland
| | - Thomas Galloway
- Fox Chase Cancer Center, Temple Health, Philadelphia, Pennsylvania
| | - Danielle N Margalit
- Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Radiation Oncology, Dana-Farber Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Constantin M, Chifiriuc MC, Bleotu C, Vrancianu CO, Cristian RE, Bertesteanu SV, Grigore R, Bertesteanu G. Molecular pathways and targeted therapies in head and neck cancers pathogenesis. Front Oncol 2024; 14:1373821. [PMID: 38952548 PMCID: PMC11215092 DOI: 10.3389/fonc.2024.1373821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024] Open
Abstract
The substantial heterogeneity exhibited by head and neck cancer (HNC), encompassing diverse cellular origins, anatomical locations, and etiological contributors, combined with the prevalent late-stage diagnosis, poses significant challenges for clinical management. Genomic sequencing endeavors have revealed extensive alterations in key signaling pathways that regulate cellular proliferation and survival. Initiatives to engineer therapies targeting these dysregulated pathways are underway, with several candidate molecules progressing to clinical evaluation phases, including FDA approval for agents like the EGFR-targeting monoclonal antibody cetuximab for K-RAS wild-type, EGFR-mutant HNSCC treatment. Non-coding RNAs (ncRNAs), owing to their enhanced stability in biological fluids and their important roles in intracellular and intercellular signaling within HNC contexts, are now recognized as potent biomarkers for disease management, catalyzing further refined diagnostic and therapeutic strategies, edging closer to the personalized medicine desideratum. Enhanced comprehension of the genomic and immunological landscapes characteristic of HNC is anticipated to facilitate a more rigorous assessment of targeted therapies benefits and limitations, optimize their clinical deployment, and foster innovative advancements in treatment approaches. This review presents an update on the molecular mechanisms and mutational spectrum of HNC driving the oncogenesis of head and neck malignancies and explores their implications for advancing diagnostic methodologies and precision therapeutics.
Collapse
Affiliation(s)
- Marian Constantin
- Department of Microbiology, Institute of Biology of Romanian Academy, Bucharest, Romania
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | - Coralia Bleotu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Cellular and Molecular Pathology Department, Ştefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Serban Vifor Bertesteanu
- ENT, Head& Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Coltea Clinical Hospital, Bucharest, Romania
| | - Raluca Grigore
- ENT, Head& Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Coltea Clinical Hospital, Bucharest, Romania
| | - Gloria Bertesteanu
- ENT, Head& Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Coltea Clinical Hospital, Bucharest, Romania
| |
Collapse
|
5
|
Shefer A, Tutanov O, Belenikin M, Tsentalovich YP, Tamkovich S. Blood Plasma Circulating DNA-Protein Complexes: Involvement in Carcinogenesis and Prospects for Liquid Biopsy of Breast Cancer. J Pers Med 2023; 13:1691. [PMID: 38138918 PMCID: PMC10744380 DOI: 10.3390/jpm13121691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Circulating DNA (cirDNA) is a promising tool in translational medicine. However, studies of cirDNA have neglected its association with proteins, despite ample evidence that this interaction may affect the fate of DNA in the bloodstream and its molecular functions. The goal of the current study is to shed light on the differences between the proteomic cargos of histone-containing nucleoprotein complexes (NPCs) from healthy female (HFs) and breast cancer patients (BCPs), and to reveal the proteins involved in carcinogenesis. NPCs were isolated from the blood samples of HFs and BCPs using affinity chromatography. A total of 177 and 169 proteins were identified in NPCs from HFs and BCPs using MALDI-TOF mass spectrometry. A bioinformatics analysis revealed that catalytically active proteins, as well as proteins that bind nucleic acids and regulate the activity of receptors, are the most represented among the unique proteins of blood NPCs from HFs and BCPs. In addition, the proportion of proteins participating in ion channels and proteins binding proteins increases in the NPCs from BCP blood. However, the involvement in transport and signal transduction was greater in BCP NPCs compared to those from HFs. Gene ontology term (GO) analysis revealed that the NPC protein cargo from HF blood was enriched with proteins involved in the negative regulation of cell proliferation, and in BCP blood, proteins involved in EMT, invasion, and cell migration were observed. The combination of SPG7, ADRB1, SMCO4, PHF1, and PSMG1 NPC proteins differentiates BCPs from HFs with a sensitivity of 100% and a specificity of 80%. The obtained results indirectly indicate that, in tandem with proteins, blood cirDNA is an important part of intercellular communication, playing a regulatory and integrating role in the physiology of the body.
Collapse
Affiliation(s)
- Aleksei Shefer
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Oleg Tutanov
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA;
| | | | - Yuri P. Tsentalovich
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Svetlana Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
6
|
Yang L, Gilbertsen A, Jacobson B, Pham J, Fujioka N, Henke CA, Kratzke RA. SFPQ and Its Isoform as Potential Biomarker for Non-Small-Cell Lung Cancer. Int J Mol Sci 2023; 24:12500. [PMID: 37569873 PMCID: PMC10419845 DOI: 10.3390/ijms241512500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer markers are measurable molecules in the blood or tissue that are produced by tumor cells or immune cells in response to cancer progression. They play an important role in clinical diagnosis, prognosis, and anti-drug monitoring. Although DNA, RNA, and even physical images have been used, proteins continue to be the most common marker. There are currently no specific markers for lung cancer. Metastatic lung cancer, particularly non-small-cell lung cancer (NSCLC), is one of the most common causes of death. SFPQ, YY1, RTN4, RICTOR, LARP6, and HELLS are expressed at higher levels in cells from NSCLC than in control or cells from inflammatory diseases. SFPQ shows the most difference between the three cell types. Furthermore, the cytoplasmic isoform of SFPQ is only found in advanced cancers. We have developed ELISAs to detect SFPQ and the long and short isoforms. Evidence has shown that the short isoform exists primarily in cancers. Furthermore, immunocytometry studies and IHC analysis have revealed that SFPQ levels are consistent with ELISA results. In addition, enhanced DNA methylation in the SFPQ gene may facilitate the SFPQ expression differences between control and cancer cells. Considering this, elevated SFPQ level and the isoform location could serve as a cancer diagnostic and prognostic marker.
Collapse
Affiliation(s)
- Libang Yang
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; (L.Y.); (A.G.); (C.A.H.)
| | - Adam Gilbertsen
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; (L.Y.); (A.G.); (C.A.H.)
| | - Blake Jacobson
- Hematology, Oncology and Transplantation, School of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; (B.J.); (N.F.)
| | - Jenny Pham
- Clinical and Translational Science Institute, School of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA;
| | - Naomi Fujioka
- Hematology, Oncology and Transplantation, School of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; (B.J.); (N.F.)
| | - Craig A. Henke
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; (L.Y.); (A.G.); (C.A.H.)
| | - Robert A. Kratzke
- Hematology, Oncology and Transplantation, School of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; (B.J.); (N.F.)
| |
Collapse
|
7
|
Silvoniemi A, Laine J, Aro K, Nissi L, Bäck L, Schildt J, Hirvonen J, Hagström J, Irjala H, Aaltonen LM, Seppänen M, Minn H. Circulating Tumor DNA in Head and Neck Squamous Cell Carcinoma: Association with Metabolic Tumor Burden Determined with FDG-PET/CT. Cancers (Basel) 2023; 15:3970. [PMID: 37568786 PMCID: PMC10416934 DOI: 10.3390/cancers15153970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The detection of circulating tumor DNA (ctDNA) with next-generation sequencing (NGS) in venous blood is a promising tool for the genomic profiling of head and neck squamous cell carcinoma (HNSCC). The association between ctDNA findings and metabolic tumor burden detected with FDG-PET/CT imaging is of particular interest for developing prognostic and predictive algorithms in HNSCC. METHODS Twenty-six prospectively enrolled HNSCC patients were eligible for further analysis. All patients underwent tumor tissue and venous liquid biopsy sampling and FDG-PET/CT before definitive oncologic treatment. An NGS-based commercial panel was used for a genomic analysis of the samples. RESULTS Maximum variant allele frequency (VAF) in blood correlated positively with whole-body (WB) metabolic tumor volume (MTV) and total lesion glycolysis (TLG) (r = 0.510, p = 0.008 and r = 0.584, p = 0.002, respectively). A positive liquid biopsy was associated with high WB-TLG using VAF ≥ 1.00% or ≥5.00% as a cut-off value (p = 0.006 or p = 0.003, respectively). Additionally, ctDNA detection was associated with WB-TLG when only concordant variants detected in both ctDNA and tissue samples were considered. CONCLUSIONS A high metabolic tumor burden based on FDG imaging is associated with a positive liquid biopsy and high maximum VAF. Our findings suggest a complementary role of metabolic and genomic signatures in the pre-treatment evaluation of HNSCC.
Collapse
Affiliation(s)
- Antti Silvoniemi
- Department of Otorhinolaryngology—Head and Neck Surgery, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
- Turku PET Centre, University of Turku, FI-20521 Turku, Finland
| | - Jukka Laine
- Department of Pathology, Turku University Hospital, University of Turku, FI-20520 Turku, Finland
| | - Katri Aro
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, FI-00029 Helsinki, Finland
| | - Linda Nissi
- Department of Oncology, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
| | - Leif Bäck
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, FI-00029 Helsinki, Finland
| | - Jukka Schildt
- Department of Nuclear Medicine, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki, FI-00029 Helsinki, Finland
| | - Jussi Hirvonen
- Department of Radiology, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
- Department of Radiology, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, FI-33520 Tampere, Finland
| | - Jaana Hagström
- Department of Oral Pathology and Radiology, University of Turku, FI-20520 Turku, Finland
- Department of Pathology, Helsinki University Hospital, Helsinki University, FI-00290 Helsinki, Finland
| | - Heikki Irjala
- Department of Otorhinolaryngology—Head and Neck Surgery, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
| | - Leena-Maija Aaltonen
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, FI-00029 Helsinki, Finland
| | - Marko Seppänen
- Turku PET Centre, University of Turku, FI-20521 Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
| | - Heikki Minn
- Turku PET Centre, University of Turku, FI-20521 Turku, Finland
- Department of Oncology, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
| |
Collapse
|
8
|
Pillai S, Kwan JC, Yaziji F, Yu H, Tran SD. Mapping the Potential of Microfluidics in Early Diagnosis and Personalized Treatment of Head and Neck Cancers. Cancers (Basel) 2023; 15:3894. [PMID: 37568710 PMCID: PMC10417175 DOI: 10.3390/cancers15153894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Head and neck cancers (HNCs) account for ~4% of all cancers in North America and encompass cancers affecting the oral cavity, pharynx, larynx, sinuses, nasal cavity, and salivary glands. The anatomical complexity of the head and neck region, characterized by highly perfused and innervated structures, presents challenges in the early diagnosis and treatment of these cancers. The utilization of sub-microliter volumes and the unique phenomenon associated with microscale fluid dynamics have facilitated the development of microfluidic platforms for studying complex biological systems. The advent of on-chip microfluidics has significantly impacted the diagnosis and treatment strategies of HNC. Sensor-based microfluidics and point-of-care devices have improved the detection and monitoring of cancer biomarkers using biological specimens like saliva, urine, blood, and serum. Additionally, tumor-on-a-chip platforms have allowed the creation of patient-specific cancer models on a chip, enabling the development of personalized treatments through high-throughput screening of drugs. In this review, we first focus on how microfluidics enable the development of an enhanced, functional drug screening process for targeted treatment in HNCs. We then discuss current advances in microfluidic platforms for biomarker sensing and early detection, followed by on-chip modeling of HNC to evaluate treatment response. Finally, we address the practical challenges that hinder the clinical translation of these microfluidic advances.
Collapse
Affiliation(s)
| | | | | | | | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cell Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada; (S.P.); (J.C.K.); (F.Y.); (H.Y.)
| |
Collapse
|
9
|
Hanna GJ, Patel N, Tedla SG, Baugnon KL, Aiken A, Agrawal N. Personalizing Surveillance in Head and Neck Cancer. Am Soc Clin Oncol Educ Book 2023; 43:e389718. [PMID: 37079869 DOI: 10.1200/edbk_389718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) encompasses a spectrum of heterogeneous diseases originating in the oral cavity, pharynx, and larynx. Within the United States, head and neck cancer (HNC) accounts for 66,470 new cases, or 3% of all malignancies, annually.1 The incidence of HNC is rising, largely driven by increases in oropharyngeal cancer.2-4 Recent molecular and clinical advancements, particularly with regard to molecular and tumor biology, reflect the heterogeneity of the subsites contained within the head and neck. Despite this, existing guidelines for post-treatment surveillance remain broad without much consideration given to different anatomic subsites and etiologic factors (such as human papillomavirus [HPV] status or tobacco exposure).5 Surveillance incorporating the physical examination, imaging, and emerging molecular biomarkers is an essential part of care for patients treated for HNC and allows for the detection of locoregional recurrence, distant metastases, and second primary malignancies aiming for better functional and survival outcomes. Additionally, it allows for evaluation and management of post-treatment complications.
Collapse
Affiliation(s)
- Glenn J Hanna
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Nirali Patel
- Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, IL
| | - Sara G Tedla
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Kristen L Baugnon
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Ashley Aiken
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Nishant Agrawal
- Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, IL
| |
Collapse
|
10
|
Dholariya S, Singh RD, Sonagra A, Yadav D, Vajaria BN, Parchwani D. Integrating Cutting-Edge Methods to Oral Cancer Screening, Analysis, and Prognosis. Crit Rev Oncog 2023; 28:11-44. [PMID: 37830214 DOI: 10.1615/critrevoncog.2023047772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Oral cancer (OC) has become a significant barrier to health worldwide due to its high morbidity and mortality rates. OC is among the most prevalent types of cancer that affect the head and neck region, and the overall survival rate at 5 years is still around 50%. Moreover, it is a multifactorial malignancy instigated by genetic and epigenetic variabilities, and molecular heterogeneity makes it a complex malignancy. Oral potentially malignant disorders (OPMDs) are often the first warning signs of OC, although it is challenging to predict which cases will develop into malignancies. Visual oral examination and histological examination are still the standard initial steps in diagnosing oral lesions; however, these approaches have limitations that might lead to late diagnosis of OC or missed diagnosis of OPMDs in high-risk individuals. The objective of this review is to present a comprehensive overview of the currently used novel techniques viz., liquid biopsy, next-generation sequencing (NGS), microarray, nanotechnology, lab-on-a-chip (LOC) or microfluidics, and artificial intelligence (AI) for the clinical diagnostics and management of this malignancy. The potential of these novel techniques in expanding OC diagnostics and clinical management is also reviewed.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Amit Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | | | | - Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| |
Collapse
|
11
|
Aulakh SS, Silverman DA, Young K, Dennis SK, Birkeland AC. The Promise of Circulating Tumor DNA in Head and Neck Cancer. Cancers (Basel) 2022; 14:2968. [PMID: 35740633 PMCID: PMC9221491 DOI: 10.3390/cancers14122968] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/17/2022] Open
Abstract
As the seventh most common cancer globally, head and neck cancers (HNC) exert considerable disease burden, with an estimated 277,597 deaths worldwide in 2020 alone. Traditional risk factors for HNC include tobacco, alcohol, and betel nut; more recently, human papillomavirus has emerged as a distinct driver of disease. Currently, limitations of cancer screening and surveillance methods often lead to identifying HNC in more advanced stages, with associated poor outcomes. Liquid biopsies, in particular circulating tumor DNA (ctDNA), offer the potential for enhancing screening, early diagnosis, and surveillance in HNC patients, with potential improvements in HNC patient outcomes. In this review, we examine current methodologies for detecting ctDNA and highlight current research illustrating viral and non-viral ctDNA biomarker utilities in HNC screening, diagnosis, treatment response, and prognosis. We also summarize current challenges and future directions for ctDNA testing in HNC patients.
Collapse
Affiliation(s)
| | - Dustin A. Silverman
- Department of Otolaryngology—Head and Neck Surgery, University of California, Davis, CA 95817, USA; (D.A.S.); (S.K.D.)
| | - Kurtis Young
- John A. Burns School of Medicine, Honolulu, HI 96813, USA;
| | - Steven K. Dennis
- Department of Otolaryngology—Head and Neck Surgery, University of California, Davis, CA 95817, USA; (D.A.S.); (S.K.D.)
| | - Andrew C. Birkeland
- Department of Otolaryngology—Head and Neck Surgery, University of California, Davis, CA 95817, USA; (D.A.S.); (S.K.D.)
| |
Collapse
|
12
|
Liquid Biopsy in Head and Neck Cancer: Current Evidence and Future Perspective on Squamous Cell, Salivary Gland, Paranasal Sinus and Nasopharyngeal Cancers. Cancers (Basel) 2022; 14:cancers14122858. [PMID: 35740523 PMCID: PMC9221064 DOI: 10.3390/cancers14122858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Head and neck cancer is the sixth most common type of solid tumor and harbors a poor prognosis since most patients are diagnosed at an advanced stage. The study of different tumor components in the blood, saliva or other body fluids is called liquid biopsy. The introduction of novel diagnostic tools such as liquid biopsy could aid in achieving earlier diagnoses and more accurate disease monitoring during treatment. In this manuscript, the reader will find an in-depth review of the current evidence and a future perspective on the role of liquid biopsy in head and neck cancer. Abstract Head and neck cancer (HNC) is currently the sixth most common solid malignancy, accounting for a 50% five-year mortality rate. In the past decade, substantial improvements in understanding its molecular biology have allowed for a growing development of new biomarkers. Among these, the field of liquid biopsy has seen a sustained growth in HNC, demonstrating the feasibility to detect different liquid biomarkers such as circulating tumor DNA (ctDNA), circulating tumor cells (CTC), extracellular vesicles and microRNAs. Liquid biopsy has been studied in HPV-negative squamous cell carcinoma of the head and neck (SCCHN) but also in other subentities such as HPV-related SCCHN, EBV-positive nasopharyngeal cancer and oncogene-driven salivary gland cancers. However, future studies should be internally and externally validated, and ideally, clinical trials should incorporate the use of liquid biomarkers as endpoints in order to prospectively demonstrate their role in HNC. A thorough review of the current evidence on liquid biopsy in HNC as well as its prospects will be conducted.
Collapse
|
13
|
Tutanov O, Shtam T, Grigor’eva A, Tupikin A, Tsentalovich Y, Tamkovich S. Blood Plasma Exosomes Contain Circulating DNA in Their Crown. Diagnostics (Basel) 2022; 12:diagnostics12040854. [PMID: 35453902 PMCID: PMC9027845 DOI: 10.3390/diagnostics12040854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
It is known that circulating DNA (cirDNA) is protected from nuclease activity by proteins that form macromolecular complexes with DNA. In addition, it was previously shown that cirDNA can bind to the outer surface of exosomes. NTA analysis and real-time PCR show that exosomes from healthy females (HF) or breast cancer patients (BCP) plasma contain less than 1.4 × 10−8 pg of DNA. Thus, only a minor part of cirDNA is attached to the outer side of the exosome as part of the vesicle crown: the share of exosomal DNA does not exceed 0.025% HF plasma DNA and 0.004% BCP plasma DNA. Treatment of plasma exosomes with DNase I with subsequent dot immunoassay reveals that H2a, H2b, and H3 histones are not part of the exosomal membrane, but are part of the cirDNA–protein macromolecular complex associated with the surface of the exosome either through interaction with DNA-binding proteins or with histone-binding proteins. Using bioinformatics approaches after identification by MALDI-TOF mass spectrometry, 16 exosomal DNA-binding proteins were identified. It was shown that four proteins—AIFM1, IGHM, CHD5, and KCNIP3—are candidates for DNA binding on the outer membrane of exosomes; the crown of exosomes may include five DNA-binding proteins: H2a, H2b, H3, IGHM, and ALB. Of note, AIFM1, IGHM, and CHD5 proteins are found only in HF plasma exosomes; KCNIP3 protein is identified only in BCP plasma exosomes; and H2a, H2b, H3, and ALB are revealed in all samples of plasma exosomes. Two histone-binding proteins, CHD5 and KDM6B, have been found in exosomes from HF plasma. The data obtained indicate that cirDNA preferentially binds to the outer membrane of exosomes by association with DNA-binding proteins.
Collapse
Affiliation(s)
- Oleg Tutanov
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia;
| | - Alina Grigor’eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.G.); (A.T.)
| | - Alexey Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.G.); (A.T.)
| | - Yuri Tsentalovich
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Svetlana Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia;
- Correspondence:
| |
Collapse
|