1
|
Choe K, Bakker L, van den Hove DLA, Eussen SJPM, Kenis G, Ramakers IHGB, Verhey FRJ, Rutten BPF, Köhler S. Kynurenine pathway dysregulation in cognitive impairment and dementia: a systematic review and meta-analysis. GeroScience 2025:10.1007/s11357-025-01636-3. [PMID: 40338439 DOI: 10.1007/s11357-025-01636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/27/2025] [Indexed: 05/09/2025] Open
Abstract
The kynurenine pathway (KP) might be involved in pathophysiological processes associated with dementia, but clinical studies reported contradictory results. This systematic review and meta-analysis summarized the available evidence for (i) differences in KP metabolites in patients with cognitive impairment compared to cognitively healthy individuals and (ii) associations between KP metabolites and cognitive functioning. English, full-length articles with prospective, cross-sectional, or case-control study designs, published in Pubmed, Embase, PsychINFO, or the Cochrane Database of Systematic Reviews up to October 2023, were included. Random-effects meta-analyses of standardized mean differences (SMD) were performed. Heterogeneity, meta-regression, small study bias, and study quality assessments were carried out. Of 8797 retrieved studies, 98 were eligible for the systematic review. Meta-analyses comparing Alzheimer's disease (AD) dementia patients to controls (n = 27 studies) indicated lower CSF levels of tryptophan (SMD = - 0.26 [95% CI - 0.41, - 0.12]), 3-hydroxykynurenine (- 0.21 [- 0.39, - 0.04]), anthranilic acid (- 0.28 [- 0.48, - 0.08]), and quinolinic acid (- 0.38 [- 0.56, - 0.21]) in AD dementia, while CSF levels of kynurenic acid were higher (0.18 [0.01, 0.35]). Blood levels of tryptophan (- 0.39 [- 0.51, - 0.28]), kynurenic acid (- 0.31 [- 0.47, - 0.15]), xanthurenic acid (- 0.34 [- 0.54, - 0.15]), and 3-hydroxyanthranilic acid (- 0.42 [- 0.61, - 0.22]) were lower in AD dementia. For some of these metabolites, similar directions were observed in meta-analyses comparing individuals with mild cognitive impairment with controls, although the number of included studies in these analyses was relatively small (n = 11). Associations with cognitive test scores were inconclusive and generally non-significant. These results suggest that AD dementia is associated with lower blood levels of several KP metabolites. Findings challenge current assumptions of neurotoxic quinolinic acid levels being associated with dementia.
Collapse
Affiliation(s)
- Kyonghwan Choe
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML), Mental Health and Neuroscience Research Institute (Mhens), Maastricht University, Maastricht, the Netherlands
| | - Lieke Bakker
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML), Mental Health and Neuroscience Research Institute (Mhens), Maastricht University, Maastricht, the Netherlands
- Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML), Mental Health and Neuroscience Research Institute (Mhens), Maastricht University, Maastricht, the Netherlands
| | - Simone J P M Eussen
- Department of Epidemiology, Maastricht University, Maastricht, the Netherlands
- School for Cardiovascular Diseases (CARIM) and Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML), Mental Health and Neuroscience Research Institute (Mhens), Maastricht University, Maastricht, the Netherlands
| | - Inez H G B Ramakers
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML), Mental Health and Neuroscience Research Institute (Mhens), Maastricht University, Maastricht, the Netherlands
- Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Frans R J Verhey
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML), Mental Health and Neuroscience Research Institute (Mhens), Maastricht University, Maastricht, the Netherlands
- Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML), Mental Health and Neuroscience Research Institute (Mhens), Maastricht University, Maastricht, the Netherlands
| | - Sebastian Köhler
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML), Mental Health and Neuroscience Research Institute (Mhens), Maastricht University, Maastricht, the Netherlands.
- Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Neumann A, Ohlei O, Küçükali F, Bos IJ, Timsina J, Vos S, Prokopenko D, Tijms BM, Andreasson U, Blennow K, Vandenberghe R, Scheltens P, Teunissen CE, Engelborghs S, Frisoni GB, Blin O, Richardson JC, Bordet R, Lleó A, Alcolea D, Popp J, Marsh TW, Gorijala P, Clark C, Peyratout G, Martinez-Lage P, Tainta M, Dobson RJB, Legido-Quigley C, Van Broeckhoven C, Tanzi RE, Ten Kate M, Lill CM, Barkhof F, Cruchaga C, Lovestone S, Streffer J, Zetterberg H, Visser PJ, Sleegers K, Bertram L. Multivariate GWAS of Alzheimer's disease CSF biomarker profiles implies GRIN2D in synaptic functioning. Genome Med 2023; 15:79. [PMID: 37794492 PMCID: PMC10548686 DOI: 10.1186/s13073-023-01233-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified several risk loci, but many remain unknown. Cerebrospinal fluid (CSF) biomarkers may aid in gene discovery and we previously demonstrated that six CSF biomarkers (β-amyloid, total/phosphorylated tau, NfL, YKL-40, and neurogranin) cluster into five principal components (PC), each representing statistically independent biological processes. Here, we aimed to (1) identify common genetic variants associated with these CSF profiles, (2) assess the role of associated variants in AD pathophysiology, and (3) explore potential sex differences. METHODS We performed GWAS for each of the five biomarker PCs in two multi-center studies (EMIF-AD and ADNI). In total, 973 participants (n = 205 controls, n = 546 mild cognitive impairment, n = 222 AD) were analyzed for 7,433,949 common SNPs and 19,511 protein-coding genes. Structural equation models tested whether biomarker PCs mediate genetic risk effects on AD, and stratified and interaction models probed for sex-specific effects. RESULTS Five loci showed genome-wide significant association with CSF profiles, two were novel (rs145791381 [inflammation] and GRIN2D [synaptic functioning]) and three were previously described (APOE, TMEM106B, and CHI3L1). Follow-up analyses of the two novel signals in independent datasets only supported the GRIN2D locus, which contains several functionally interesting candidate genes. Mediation tests indicated that variants in APOE are associated with AD status via processes related to amyloid and tau pathology, while markers in TMEM106B and CHI3L1 are associated with AD only via neuronal injury/inflammation. Additionally, seven loci showed sex-specific associations with AD biomarkers. CONCLUSIONS These results suggest that pathway and sex-specific analyses can improve our understanding of AD genetics and may contribute to precision medicine.
Collapse
Affiliation(s)
- Alexander Neumann
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, V50.2M, Lübeck, 23562, Germany
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Isabelle J Bos
- Netherlands Institute for Health Services Research, Utrecht, Netherlands
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Stephanie Vos
- Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands
| | - Dmitry Prokopenko
- Genetics and Aging Unit and McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospital Leuven, Leuven, Belgium
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Universitair Ziekenhuis Brussel (UZ Brussel) and Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Giovanni B Frisoni
- Memory Center, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals, Geneva, Switzerland
| | - Oliver Blin
- Clinical Pharmacology & Pharmacovigilance Department, Marseille University Hospital, Marseille, France
| | | | - Régis Bordet
- Neuroscience & Cognition, CHU de Lille, University of Lille, Inserm, France
| | - Alberto Lleó
- Memory Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Memory Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Julius Popp
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zürich, Zurich, Switzerland
- Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Thomas W Marsh
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
- Division of Biology & Biomedical Sciences, Washington University in St. Louis, St Louis, MO, USA
| | - Priyanka Gorijala
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Christopher Clark
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zürich, Zurich, Switzerland
| | - Gwendoline Peyratout
- Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Pablo Martinez-Lage
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, San Sebastian, Spain
| | - Mikel Tainta
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, San Sebastian, Spain
- Zumarraga Hospital, Osakidetza, Integrated Health Organization (OSI) Goierri-Urola Garia, Basque Country, Spain
| | - Richard J B Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Boston, UK
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
- Health Data Research UK London, University College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - Cristina Legido-Quigley
- Steno Diabetes Center, Copenhagen, Denmark
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Christine Van Broeckhoven
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Rudolph E Tanzi
- Genetics and Aging Unit and McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Mara Ten Kate
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, Netherlands
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, Netherlands
| | - Christina M Lill
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, V50.2M, Lübeck, 23562, Germany
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College, London, UK
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Simon Lovestone
- Janssen Medical Ltd, Wycombe, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Johannes Streffer
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- AC Immune SA, Lausanne, Switzerland
- Janssen R&D, LLC, Beerse, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Pieter Jelle Visser
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, Netherlands
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, V50.2M, Lübeck, 23562, Germany.
- Centre for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Shi L, Xu J, Green R, Wretlind A, Homann J, Buckley NJ, Tijms BM, Vos SJB, Lill CM, Kate MT, Engelborghs S, Sleegers K, Frisoni GB, Wallin A, Lleó A, Popp J, Martinez-Lage P, Streffer J, Barkhof F, Zetterberg H, Visser PJ, Lovestone S, Bertram L, Nevado-Holgado AJ, Proitsi P, Legido-Quigley C. Multiomics profiling of human plasma and cerebrospinal fluid reveals ATN-derived networks and highlights causal links in Alzheimer's disease. Alzheimers Dement 2023; 19:3350-3364. [PMID: 36790009 DOI: 10.1002/alz.12961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 02/16/2023]
Abstract
INTRODUCTION This study employed an integrative system and causal inference approach to explore molecular signatures in blood and CSF, the amyloid/tau/neurodegeneration [AT(N)] framework, mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD), and genetic risk for AD. METHODS Using the European Medical Information Framework (EMIF)-AD cohort, we measured 696 proteins in cerebrospinal fluid (n = 371), 4001 proteins in plasma (n = 972), 611 metabolites in plasma (n = 696), and genotyped whole-blood (7,778,465 autosomal single nucleotide epolymorphisms, n = 936). We investigated associations: molecular modules to AT(N), module hubs with AD Polygenic Risk scores and APOE4 genotypes, molecular hubs to MCI conversion and probed for causality with AD using Mendelian randomization (MR). RESULTS AT(N) framework associated with protein and lipid hubs. In plasma, Proprotein Convertase Subtilisin/Kexin Type 7 showed evidence for causal associations with AD. AD was causally associated with Reticulocalbin 2 and sphingomyelins, an association driven by the APOE isoform. DISCUSSION This study reveals multi-omics networks associated with AT(N) and causal AD molecular candidates.
Collapse
Affiliation(s)
- Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Jin Xu
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Rebecca Green
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- UK National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley Trust, London, UK
- MRC Unit for Lifelong Health & Ageing at UCL, University College London, London, UK
| | | | - Jan Homann
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Betty M Tijms
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - Christina M Lill
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
- Institute of Epidemiology and Social Medicine, University of Muenster, Muenster, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Mara Ten Kate
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, UZ Brussel and Center for Neurociences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Kristel Sleegers
- Complex Genetics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Giovanni B Frisoni
- University of Geneva, Geneva, Switzerland
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anders Wallin
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Alberto Lleó
- Neurology Department, Centro de Investigación en Red en enfermedades neurodegenerativas (CIBERNED), Hospital Sant Pau, Barcelona, Spain
| | - Julius Popp
- University Hospital of Lausanne, Lausanne, Switzerland
- Department of Geriatric Psychiatry, University Hospital of Psychiatry and University of Zürich, Zürich, Switzerland
| | | | - Johannes Streffer
- AC Immune SA, formerly Janssen R&D, LLC. Beerse, Belgium at the time of study conduct, Lausanne, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherland
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Pieter Jelle Visser
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, UK
- Janssen Medical (UK), High Wycombe, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
- Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Petroula Proitsi
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cristina Legido-Quigley
- Institute of Pharmaceutical Science, King's College London, London, UK
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
4
|
Pais ML, Martins J, Castelo-Branco M, Gonçalves J. Sex Differences in Tryptophan Metabolism: A Systematic Review Focused on Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:ijms24066010. [PMID: 36983084 PMCID: PMC10057939 DOI: 10.3390/ijms24066010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Tryptophan (Tryp) is an essential amino acid and the precursor of several neuroactive compounds within the central nervous system (CNS). Tryp metabolism, the common denominator linking serotonin (5-HT) dysfunctions and neuroinflammation, is involved in several neuropsychiatric conditions, including neurological, neurodevelopmental, neurodegenerative, and psychiatric diseases. Interestingly, most of those conditions occur and progress in a sex-specific manner. Here, we explore the most relevant observations about the influence of biological sex on Tryp metabolism and its possible relation to neuropsychiatric diseases. Consistent evidence suggests that women have a higher susceptibility than men to suffer serotoninergic alterations due to changes in the levels of its precursor Tryp. Indeed, female sex bias in neuropsychiatric diseases is involved in a reduced availability of this amino acid pool and 5-HT synthesis. These changes in Tryp metabolism could lead to sexual dimorphism on the prevalence and severity of some neuropsychiatric disorders. This review identifies gaps in the current state of the art, thus suggesting future research directions. Specifically, there is a need for further research on the impact of diet and sex steroids, both involved in this molecular mechanism as they have been poorly addressed for this topic.
Collapse
Affiliation(s)
- Mariana Lapo Pais
- Doctoral Program in Biomedical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Gonçalves
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
5
|
Clark C, Rabl M, Dayon L, Popp J. The promise of multi-omics approaches to discover biological alterations with clinical relevance in Alzheimer's disease. Front Aging Neurosci 2022; 14:1065904. [PMID: 36570537 PMCID: PMC9768448 DOI: 10.3389/fnagi.2022.1065904] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Beyond the core features of Alzheimer's disease (AD) pathology, i.e. amyloid pathology, tau-related neurodegeneration and microglia response, multiple other molecular alterations and pathway dysregulations have been observed in AD. Their inter-individual variations, complex interactions and relevance for clinical manifestation and disease progression remain poorly understood, however. Heterogeneity at both pathophysiological and clinical levels complicates diagnosis, prognosis, treatment and drug design and testing. High-throughput "omics" comprise unbiased and untargeted data-driven methods which allow the exploration of a wide spectrum of disease-related changes at different endophenotype levels without focussing a priori on specific molecular pathways or molecules. Crucially, new methodological and statistical advances now allow for the integrative analysis of data resulting from multiple and different omics methods. These multi-omics approaches offer the unique advantage of providing a more comprehensive characterisation of the AD endophenotype and to capture molecular signatures and interactions spanning various biological levels. These new insights can then help decipher disease mechanisms more deeply. In this review, we describe the different multi-omics tools and approaches currently available and how they have been applied in AD research so far. We discuss how multi-omics can be used to explore molecular alterations related to core features of the AD pathologies and how they interact with comorbid pathological alterations. We further discuss whether the identified pathophysiological changes are relevant for the clinical manifestation of AD, in terms of both cognitive impairment and neuropsychiatric symptoms, and for clinical disease progression over time. Finally, we address the opportunities for multi-omics approaches to help discover novel biomarkers for diagnosis and monitoring of relevant pathophysiological processes, along with personalised intervention strategies in AD.
Collapse
Affiliation(s)
- Christopher Clark
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zürich, Zürich, Switzerland,Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland,*Correspondence: Christopher Clark,
| | - Miriam Rabl
- Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland,University of Lausanne, Lausanne, Switzerland
| | - Loïc Dayon
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland,Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Julius Popp
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zürich, Zürich, Switzerland,Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland,Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
6
|
Aerqin Q, Wang ZT, Wu KM, He XY, Dong Q, Yu JT. Omics-based biomarkers discovery for Alzheimer's disease. Cell Mol Life Sci 2022; 79:585. [PMID: 36348101 PMCID: PMC11803048 DOI: 10.1007/s00018-022-04614-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorders presenting with the pathological hallmarks of amyloid plaques and tau tangles. Over the past few years, great efforts have been made to explore reliable biomarkers of AD. High-throughput omics are a technology driven by multiple levels of unbiased data to detect the complex etiology of AD, and it provides us with new opportunities to better understand the pathophysiology of AD and thereby identify potential biomarkers. Through revealing the interaction networks between different molecular levels, the ultimate goal of multi-omics is to improve the diagnosis and treatment of AD. In this review, based on the current AD pathology and the current status of AD diagnostic biomarkers, we summarize how genomics, transcriptomics, proteomics and metabolomics are all conducing to the discovery of reliable AD biomarkers that could be developed and used in clinical AD management.
Collapse
Affiliation(s)
- Qiaolifan Aerqin
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Kai-Min Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Xiao-Yu He
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
7
|
Marszalek-Grabska M, Zakrocka I, Budzynska B, Marciniak S, Kaszubska K, Lemieszek MK, Winiarczyk S, Kotlinska JH, Rzeski W, Turski WA. Binge-like mephedrone treatment induces memory impairment concomitant with brain kynurenic acid reduction in mice. Toxicol Appl Pharmacol 2022; 454:116216. [PMID: 36057403 DOI: 10.1016/j.taap.2022.116216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 10/31/2022]
Abstract
While mephedrone (4-methylmethcathinone), a synthetic cathinone derivative, is widely abused by adolescents and young adults, the knowledge about its long-term effects on memory processes is limited. Kynurenic acid (KYNA) is a neuroactive metabolite of the kynurenine pathway of tryptophan degradation. KYNA is considered an important endogenous modulator influencing physiological and pathological processes, including learning and memory processes. The aim of this study was to determine whether (A) binge-like mephedrone administration (10.0 and 30.0 mg/kg, intraperitoneally, in 4 doses separated by 2 h) induces memory impairments, assessed 2, 8 and 15 days after mephedrone cessation in the passive avoidance test in mice, and whether (B) KYNA is involved in these memory processes. To clarify the role of KYNA in the mephedrone effects, its level in the murine brain in vivo, and in cortical slices in vitro, as well as the activities of kynurenine aminotransferases (KATs) I and II were assessed. Furthermore, cell line experiments were conducted to investigate the effects of mephedrone on normal human brain cells. Our results showed memory impairments 8 and 15 days after binge-like mephedrone administration. At the same time, reduction in the KYNA level in the murine brain was noted. In vitro studies showed no effect of mephedrone on the production of KYNA in cortical slices or on the activity of the KAT I and II enzymes. Finally, exposure of normal cells to mephedrone in vitro resulted in a modest reduction of cell viability and proliferation.
Collapse
Affiliation(s)
- Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Izabela Zakrocka
- Department of Nephrology, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Barbara Budzynska
- Independent Laboratory of Behavioral Studies, Medical University, Chodzki 4a, 20-090 Lublin, Poland
| | - Sebastian Marciniak
- Department of Pharmacology, Medical University, Chodźki 4a, 20-093 Lublin, Poland
| | - Katarzyna Kaszubska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4a, 20-093 Lublin, Poland
| | - Marta Kinga Lemieszek
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Sylwia Winiarczyk
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Jolanta H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4a, 20-093 Lublin, Poland
| | - Wojciech Rzeski
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|