1
|
Fernández-Guarino M, Hernández-Bule ML, Bacci S. Cellular and Molecular Processes in Wound Healing. Biomedicines 2023; 11:2526. [PMID: 37760967 PMCID: PMC10525842 DOI: 10.3390/biomedicines11092526] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
This review summarizes the recent knowledge of the cellular and molecular processes that occur during wound healing. However, these biological mechanisms have yet to be defined in detail; this is demonstrated by the fact that alterations of events to pathological states, such as keloids, consisting of the excessive formation of scars, have consequences yet to be defined in detail. Attention is also dedicated to new therapies proposed for these kinds of pathologies. Awareness of these scientific problems is important for experts of various disciplines who are confronted with these kinds of presentations daily.
Collapse
Affiliation(s)
- Montserrat Fernández-Guarino
- Dermatology Service, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), 28034 Madrid, Spain;
| | - Maria Luisa Hernández-Bule
- Bioelectromagnetic Lab, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), 28034 Madrid, Spain;
| | - Stefano Bacci
- Research Unit of Histology and Embriology, Department of Biology, University of Florence, Viale Pieraccini 6, 50134 Firenze, Italy
| |
Collapse
|
2
|
Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma R, Sharma M. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne) 2023; 10:1213320. [PMID: 37663654 PMCID: PMC10470157 DOI: 10.3389/fmed.2023.1213320] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.
Collapse
Affiliation(s)
- Kottarappat N. Dileepan
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Vineesh V. Raveendran
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rishi Sharma
- Department of Medicine, School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Harita Abraham
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Barua
- Cardiology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Vikas Singh
- Neurology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City VA Medical Center, Kansas, MO, United States
| |
Collapse
|
3
|
Fadilah NIM, Ahmat N, Hao LQ, Maarof M, Rajab NF, Idrus RBH, Fauzi MB. Biological Safety Assessments of High-Purified Ovine Collagen Type I Biomatrix for Future Therapeutic Product: International Organisation for Standardisation (ISO) and Good Laboratory Practice (GLP) Settings. Polymers (Basel) 2023; 15:polym15112436. [PMID: 37299233 DOI: 10.3390/polym15112436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Wound care management is incredibly challenging for chronic injuries, despite the availability of various types of wound care products in the market. However, most current wound-healing products do not attempt to mimic the extracellular matrix (ECM) and simply provide a barrier function or wound covering. Collagen is a natural polymer that involves a major constituent of the ECM protein, thus making it attractive to be used in skin tissue regeneration during wound healing. This study aimed to validate the biological safety assessments of ovine tendon collagen type-I (OTC-I) in the accredited laboratory under ISO and GLP settings. It is important to ensure that the biomatrix will not stimulate the immune system to produce any adverse reaction. Therefore, we successfully extracted collagen type-I from the ovine tendon (OTC- I) using a method of low-concentration acetic acid. The three-dimensional (3D) skin patch of spongy OTC-I was a soft and white colour, being tested for safety and biocompatibility evaluations based on ISO 10993-5, ISO 10993-10, ISO 10993-11, ISO 10993-23, USP 40 <151>, and OECD 471. For the dermal sensitisation and acute irritation test, none of the tested animals displayed any erythema or oedema effects (p > 0.005). In addition, there were no abnormalities detected in the organ of the mice after being exposed to OTC-I; additionally, no morbidity and mortality were observed in the acute systemic test under the guideline of ISO 10993-11:2017. The grade 0 (non-reactive) based on ISO 10993-5:2009 was graded for the OTC-I at 100% concentration and the mean number of the revertant colonies did not exceed 2-fold of the 0.9% w/v sodium chloride compared to the tester strains of S. typhimurium (TA100, TA1535, TA98, TA1537), and E. coli (WP2 trp uvrA). Our study revealed that OTC-I biomatrix does not present any adverse effects or abnormalities in the present study's condition of induced skin sensitization effect, mutagenic and cytotoxic towards cells and animals. This biocompatibility assessment demonstrated a good agreement between in vitro and in vivo results regarding the absence of skin irritation and sensitization potential. Therefore, OTC-I biomatrix is a potential medical device candidate for future clinical trials focusing on wound care management.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nazeha Ahmat
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Looi Qi Hao
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- My Cytohealth Sdn. Bhd., Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nor Fadilah Rajab
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur 50300, Malaysia
| | - Ruszymah Binti Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- My Cytohealth Sdn. Bhd., Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Blue-LED-Light Photobiomodulation of Inflammatory Responses and New Tissue Formation in Mouse-Skin Wounds. Life (Basel) 2022; 12:life12101564. [PMID: 36295000 PMCID: PMC9604901 DOI: 10.3390/life12101564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Recent studies evidence that blue-LED-light irradiation can modulate cell responses in the wound healing process within 24 h from treatment. This study aims to investigate blue-light (410-430 nm) photobiomodulation used in a murine wound model within six days post-treatment. Methods: A superficial wound was made in 30 CD1 male mice. The injuries were treated with a blue LED light (20.6 J/cm2), and biopsies were collected at 24, 72, and 144 h. Histology, fluorescence analysis, and advanced microscopy techniques were used. Results: We can observe an increase in the cellular infiltrate response, and in mast-cell density and their degranulation index correlated to the expression of the major histocompatibility complex after 24 h. Furthermore, after six days, the vessel density increases with the expression of the platelet-derived growth factor in the mast cells. Finally, collagen deposition and morphology in the treated wounds appear more similar to unwounded skin. Conclusions: Blue-light photobiomodulation stimulates several cellular processes that are finely coordinated by mast cells, leading to more rapid wound healing and a better-recovered skin morphology.
Collapse
|
5
|
Cellular Mechanisms in Acute and Chronic Wounds after PDT Therapy: An Update. Biomedicines 2022; 10:biomedicines10071624. [PMID: 35884929 PMCID: PMC9313247 DOI: 10.3390/biomedicines10071624] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/17/2022] Open
Abstract
PDT is a two-stage treatment that combines light energy with a photosensitizer designed to destroy cancerous and precancerous cells after light activation. Photosensitizers are activated by a specific wavelength of light energy, usually from a laser. The photosensitizer is nontoxic until it is activated by light. However, after light activation, the photosensitizer becomes toxic to the targeted tissue. Among sensitizers, the topical use of ALA, a natural precursor of protoporphyrin IX, a precursor of the heme group, and a powerful photosensitizing agent, represents a turning point for PDT in the dermatological field, as it easily absorbable by the skin. Wound healing requires a complex interaction and coordination of different cells and molecules. Any alteration in these highly coordinated events can lead to either delayed or excessive healing. The goal of this review is to elucidate the cellular mechanisms involved, upon treatment with ALA-PDT, in chronic wounds, which are often associated with social isolation and high costs in terms of care.
Collapse
|