1
|
Faingold CL. Lethal Interactions of neuronal networks in epilepsy mediated by both synaptic and volume transmission indicate approaches to prevention. Prog Neurobiol 2025; 249:102770. [PMID: 40258456 DOI: 10.1016/j.pneurobio.2025.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/24/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025]
Abstract
Neuronal network interactions are important in normal brain physiology and also in brain disorders. Many mesoscopic networks, including the auditory and respiratory network, mediate a single brain function. Macroscopic networks, including the locomotor network, central autonomic network (CAN), and many seizure networks involve interactions among multiple mesoscopic networks. Network interactions are mediated by neuroactive substances, acting via synaptic transmission, which mediate rapid interactions between networks. Slower, but vitally important network interactions, are mediated by volume transmission. Changes in the interactions between networks, mediated by neuroactive substances, can significantly alter network function and interactions. The acoustic startle response involves interactions between auditory and locomotor networks, and also includes brainstem reticular formation (BRF) nuclei, which participate in many different networks. In the fear-potentiated startle paradigm this network interacts positively with the amygdala, induced by conditioning. Seizure networks can interact negatively with the respiratory network, which becomes lethal in sudden unexpected death in epilepsy (SUDEP), a tragic emergent property of the seizure network. SUDEP models that exhibit audiogenic seizures (AGSz) involve interactions between the auditory and locomotor networks with BRF nuclei. In the DBA/1 mouse SUDEP model the AGSz network interacts negatively with the respiratory network, resulting in postictal apnea. The apnea is lethal unless the CAN is able to initiate autoresuscitation. These network interactions involve synaptic transmission, mediated by GABA and glutamate and volume transmission mediated by adenosine, CO2 and serotonin. Altering these interaction mechanisms may prevent SUDEP. These epilepsy network interactions illustrate the complex mechanisms that can occur among neuronal networks.
Collapse
Affiliation(s)
- Carl L Faingold
- Departments of Pharmacology and Neurology, Southern Illinois University, School of Medicine, Springfield, IL 62701 USA, United States.
| |
Collapse
|
2
|
Levichkina E, Grayden DB, Petrou S, Cook MJ, Vidyasagar TR. Sleep links hippocampal propensity for epileptiform activity to its viscerosensory inputs. Front Neurosci 2025; 19:1559529. [PMID: 40182148 PMCID: PMC11965934 DOI: 10.3389/fnins.2025.1559529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
The development of a seizure relies on two factors. One is the existence of an overexcitable neuronal network and the other is a trigger that switches normal activity of that network into a paroxysmal state. While mechanisms of local overexcitation have been the focus of many studies, the process of triggering remains poorly understood. We suggest that, apart from the known exteroceptive sources of reflex epilepsy such as visual, auditory or olfactory signals, there is a range of interoceptive triggers, which are relevant for seizure development in Temporal Lobe Epilepsy (TLE). The hypothesis proposed here aims to explain the prevalence of epileptic activity in sleep and in drowsiness states and to provide a detailed mechanism of seizures triggered by interoceptive signals.
Collapse
Affiliation(s)
- Ekaterina Levichkina
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - David B. Grayden
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
- Graeme Clark Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Mark J. Cook
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
- Graeme Clark Institute, The University of Melbourne, Parkville, VIC, Australia
- Department of Neuroscience, St. Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Trichur R. Vidyasagar
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
- Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Singh M, Panda SP. Investigating the Therapeutic Property of Galium verum L. (GV) for MSG induced Audiogenic Epilepsy (AEs) and Neuroprotection through In-Silico and In-Vitro Analysis. Cent Nerv Syst Agents Med Chem 2025; 25:181-209. [PMID: 39253919 DOI: 10.2174/0118715249330123240822063420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Audiogenic Epilepsy (AEs) is a subtype of epileptic seizure that is generally caused by high-intensity sounds. A large number of traditional medicines has been explored in this lieu where our study chased Galium verum L. (Rubiaceae), an herbal plant which is commonly known as Lady's Bedstraw, that contains a highly rich chemical composition including flavonoids (Hispidulin, Quercetin, and Kaempferol), and phenolic acids (chlorogenic acid, caftaric acid, and gallic acid). G verum is well known for its antioxidant, neuroprotective, and anti-inflammatory properties. Recently, the unique role of Adhesion G Protein- Coupled Receptor V1 (ADGRV1) protein in the progression of audiogenic epilepsy has been explored. AIMS AND OBJECTIVES This study aimed to examine the potent phytoconstituents of the hydroalcoholic extract of G. verum L. (HEGV) using analytical techniques. Additionally, our study sought to evaluate the antioxidant, neuroprotective, anti-inflammatory properties, and antiepileptic potency of HEGV by targeting ADGRV1 via in silico and in vitro analyses using SHSY5Y cells. METHODS HPLC and LC-MS techniques were employed to identify the flavonoids, iridoids, and phenolic acid derivatives present in HEGV. DPPH (2,2-diphenyl-1-picrylhydrazyl), nitric oxide (NO), and hydroxyl (OH) radical scavenging assays were performed to confirm the antioxidant potential of the extract. Additionally, in silico molecular docking and molecular dynamic studies were performed using AutoDock Vina software to analyze the possible interactions between crucial phytoconstituents of HEGV and ADGRV1, followed by cell line analysis. In the in vitro analysis, antioxidant, neuroprotective, and anti-inflammatory properties were assessed via cell viability assay, IL, GABA, and glutamate estimation. RESULTS LC-MS and HPLC analyses revealed high concentrations of hispidulin, a major flavonoid found in HEGV. HEGV exhibited moderate-to-high free radical-scavenging activities comparable to those of ascorbic acid. Docking analysis demonstrated that hispidulin has a stronger binding affinity with ADGRV1 (Vina score = -8.6 kcal/mol) than other compounds. Furthermore, cell line analysis revealed that the MSG exacerbates the neurodegeneration and neuroinflammation, whereas, HEGV and Hispidulin both possess neuroprotective, antioxidant, and antiepileptic activities. CONCLUSION HEGV and Hispidulin proved to be promising candidates for treating audiogenic epilepsy by modulating ADGRV1.
Collapse
Affiliation(s)
- Mansi Singh
- Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh-281406, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh-281406, India
| |
Collapse
|
4
|
Asim M, Qianqian G, Waris A, Wang H, Lai Y, Chen X. Unraveling the role of cholecystokinin in epilepsy: Mechanistic insight into neuroplasticity. Neurochem Int 2024; 180:105870. [PMID: 39343303 DOI: 10.1016/j.neuint.2024.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Epilepsy is a disorder characterized by an imbalance between excitability and inhibition, leading to uncontrolled hyperexcitability of neurons in the central nervous system. Despite the prevalence of epileptic seizures, the underlying mechanisms driving this hyperexcitability remain poorly understood. This review article aims to enhance our understanding of the mechanisms of epilepsy, with a specific focus on the role of cholecystokinin (CCK) in this debilitating disease. We will begin with an introduction to the topic, followed by an examination of the role of GABAergic neurons and the synaptic plasticity mechanisms associated with seizures. As we delve deeper, we will elucidate how CCK and its receptors contribute to seizure behavior. Finally, we will discuss the CCK-dependent synaptic plasticity mechanisms and highlight their potential implications in seizure activity. Through a comprehensive examination of these aspects, this review provides valuable insights into the involvement of CCK and its receptors in epilepsy. By improving our understanding of the mechanisms underlying this condition, particularly the role of CCK, we aim to contribute to the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong.
| | - Gao Qianqian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Abdul Waris
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Huajie Wang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Yuanying Lai
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong
| |
Collapse
|
5
|
Krivopalov S, Yushkov B, Sarapultsev A. Wireless EEG Recording of Audiogenic Seizure Activity in Freely Moving Krushinsky-Molodkina Rats. Biomedicines 2024; 12:946. [PMID: 38790907 PMCID: PMC11117987 DOI: 10.3390/biomedicines12050946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigates audiogenic epilepsy in Krushinsky-Molodkina (KM) rats, questioning the efficacy of conventional EEG techniques in capturing seizures during animal restraint. Using a wireless EEG system that allows unrestricted movement, our aim was to gather ecologically valid data. Nine male KM rats, prone to audiogenic seizures, received implants of wireless EEG transmitters that target specific seizure-related brain regions. These regions included the inferior colliculus (IC), pontine reticular nucleus, oral part (PnO), ventrolateral periaqueductal gray (VLPAG), dorsal area of the secondary auditory cortex (AuD), and motor cortex (M1), facilitating seizure observation without movement constraints. Our findings indicate that targeted neural intervention via electrode implantation significantly reduced convulsive seizures in approximately half of the subjects, suggesting therapeutic potential. Furthermore, the amplitude of brain activity in the IC, PnO, and AuD upon audiogenic stimulus onset significantly influenced seizure severity and nature, highlighting these areas as pivotal for epileptic propagation. Severe cases exhibited dual waves of seizure generalization, indicative of intricate neural network interactions. Distinctive interplay between specific brain regions, disrupted during convulsive activity, suggests neural circuit reconfiguration in response to escalating seizure intensity. These discoveries challenge conventional methodologies, opening avenues for novel approaches in epilepsy research and therapeutic interventions.
Collapse
Affiliation(s)
- Sergey Krivopalov
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia;
| | - Boris Yushkov
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia;
- GAUZ SO Institute for Medical Cell Technologies, 620026 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia;
| |
Collapse
|
6
|
Ryazanova MA, Plekanchuk VS, Prokudina OI, Makovka YV, Alekhina TA, Redina OE, Markel AL. Animal Models of Hypertension (ISIAH Rats), Catatonia (GC Rats), and Audiogenic Epilepsy (PM Rats) Developed by Breeding. Biomedicines 2023; 11:1814. [PMID: 37509453 PMCID: PMC10376947 DOI: 10.3390/biomedicines11071814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Research into genetic and physiological mechanisms of widespread disorders such as arterial hypertension as well as neuropsychiatric and other human diseases is urgently needed in academic and practical medicine and in the field of biology. Nevertheless, such studies have many limitations and pose difficulties that can be overcome by using animal models. To date, for the purposes of creating animal models of human pathologies, several approaches have been used: pharmacological/chemical intervention; surgical procedures; genetic technologies for creating transgenic animals, knockouts, or knockdowns; and breeding. Although some of these approaches are good for certain research aims, they have many drawbacks, the greatest being a strong perturbation (in a biological system) that, along with the expected effect, exerts side effects in the study. Therefore, for investigating the pathogenesis of a disease, models obtained using genetic selection for a target trait are of high value as this approach allows for the creation of a model with a "natural" manifestation of the pathology. In this review, three rat models are described: ISIAH rats (arterial hypertension), GC rats (catatonia), and PM rats (audiogenic epilepsy), which are developed by breeding in the Laboratory of Evolutionary Genetics at the Institute of Cytology and Genetics (the Siberian Branch of the Russian Academy of Sciences).
Collapse
Affiliation(s)
- Marina A Ryazanova
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Vladislava S Plekanchuk
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga I Prokudina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yulia V Makovka
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Tatiana A Alekhina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga E Redina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Arcady L Markel
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Tsyba ET, Birioukova LM, Midzyanovskaya IS, Surina NM, Abbasova KR. Brain D2-Like Dopamine Receptor Distribution in Rats with Different Types of Genetic Epilepsy. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 509:140-144. [PMID: 37208583 DOI: 10.1134/s0012496623700278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 05/21/2023]
Abstract
The distribution of the D2-like dopamine receptor (D2DR) in the cortex and striatum was compared between rats with absence, audiogenic, or combined genetically determined epilepsy and normal Wistar rats by autoradiography. A significantly lower D2DR binding density was observed in the dorsal and ventrolateral aspects of the nucleus accumbens in epileptic vs. non-epileptic rats. Rats with audiogenic epilepsy additionally showed a higher D2DR density in the dorsal striatum and motor and somatosensory cortex and a lower D2DR density in the ventrolateral part of the nucleus accumbens. The findings indicated that a common neuronal circuit is involved in the pathogenesis of both convulsive and nonconvulsive forms of generalized epilepsy.
Collapse
Affiliation(s)
- E T Tsyba
- Biological Faculty, Moscow State University, Moscow, Russia.
| | - L M Birioukova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - I S Midzyanovskaya
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - N M Surina
- Biological Faculty, Moscow State University, Moscow, Russia
| | - K R Abbasova
- Biological Faculty, Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Surina NM, Fedotova IB, Nikolaev GM, Grechenko VV, Gankovskaya LV, Ogurtsova AD, Poletaeva II. Neuroinflammation in Pathogenesis of Audiogenic Epilepsy: Altered Proinflammatory Cytokine Levels in the Rats of Krushinsky-Molodkina Seizure-Prone Strain. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:481-490. [PMID: 37080934 DOI: 10.1134/s0006297923040041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Neuroinflammation plays an important role in epileptogenesis, however, most studies are performed using pharmacological models of epilepsy, while there are only few data available for non-invasive, including genetic, models. The levels of a number of pro-inflammatory cytokines were examined in the Krushinsky-Molodkina (KM) rat strain with high audiogenic epilepsy (AE) proneness (intense tonic seizure fit in response to loud sound) and in the control strain "0" (not predisposed to AE) using multiplex immunofluorescence magnetic assay (MILLIPLEX map Kit). Cytokine levels were determined in the dorsal striatum tissue and in the brain stem. Background levels of IL-1β, IL-6, and TNF-α in the dorsal striatum of the KM rats were significantly lower than in the rats "0" (by 32.31, 27.84, and 38.87%, respectively, p < 0.05, 0.05, and 0.01), whereas no inter-strain differences in the levels of these metabolites were detected in the brain stem in the "background" state. Four hours after sound exposure, the TNF-α level in the dorsal striatum of the KM rats was significantly lower (by 38.34%, p < 0.01) than in the "0" rats. In the KM rats, the dorsal striatal levels of IL-1β and IL-6 were significantly higher after the sound exposure and subsequent seizure fit, compared to the background (35.29 and 50.21% increase, p < 0.05, 0.01, respectively). In the background state the IL-2 level in the KM rats was not detected, whereas after audiogenic seizures its level was 14.01 pg/ml (significant difference, p < 0.01). In the KM rats the brain stem levels of IL-1β and TNF-α after audiogenic seizures were significantly lower than in the background (13.23 and 23.44% decrease, respectively, p < 0.05). In the rats of the "0" strain, the levels of cytokines in the dorsal striatum after the action of sound (which did not induce AE seizures) were not different from those of the background, while in the brain stem of the "0" strain the levels of IL-1β were lower than in the background (40.28%, p < 0.01). Thus, the differences between the background levels of cytokines and those after the action of sound were different in the rats with different proneness to AE. These data suggest involvement of the analyzed cytokines in pathophysiology of the seizure state, namely in AE seizures.
Collapse
Affiliation(s)
- Natalia M Surina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Irina B Fedotova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Georgy M Nikolaev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | | | | | - Inga I Poletaeva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
9
|
Striatal Patchwork of D1-like and D2-like Receptors Binding Densities in Rats with Genetic Audiogenic and Absence Epilepsies. Diagnostics (Basel) 2023; 13:diagnostics13040587. [PMID: 36832075 PMCID: PMC9955649 DOI: 10.3390/diagnostics13040587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Binding densities to dopamine D1-like and D2-like receptors (D1DR and D2DR) were studied in brain regions of animals with genetic generalized audiogenic (AGS) and/or absence (AbS) epilepsy (KM, WAG/Rij-AGS, and WAG/Rij rats, respectively) as compared to non-epileptic Wistar (WS) rats. Convulsive epilepsy (AGS) exerted a major effect on the striatal subregional binding densities for D1DR and D2DR. An increased binding density to D1DR was found in the dorsal striatal subregions of AGS-prone rats. Similar changes were seen for D2DR in the central and dorsal striatal territories. Subregions of the nucleus accumbens demonstrated consistent subregional decreases in the binding densities of D1DR and D2DR in epileptic animals, irrespective of epilepsy types. This was seen for D1DR in the dorsal core, dorsal, and ventrolateral shell; and for D2DR in the dorsal, dorsolateral, and ventrolateral shell. An increased density of D2DR was found in the motor cortex of AGS-prone rats. An AGS-related increase in binding densities to D1DR and D2DR in the dorsal striatum and motor cortex, areas responsible for motor activity, possibly reflects the activation of brain anticonvulsive loops. General epilepsy-related decreases in binding densities to D1DR and D2DR in the accumbal subregions might contribute to behavioral comorbidities of epilepsy.
Collapse
|
10
|
Pathogenesis and Targeted Therapy of Epilepsy. Biomedicines 2022; 10:biomedicines10123134. [PMID: 36551890 PMCID: PMC9776351 DOI: 10.3390/biomedicines10123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The Biomedicines Special Issue (BSI) of "Pathogenesis and Targeted Therapy of Epilepsy" seeks papers providing new insights into the roles of voltage-gated and ligand-gated ion channels and their related signaling in the pathogenesis and pathophysiology of acquired epilepsy and inherited epilepsy [...].
Collapse
|
11
|
Rodent Models of Audiogenic Epilepsy: Genetic Aspects, Advantages, Current Problems and Perspectives. Biomedicines 2022; 10:biomedicines10112934. [PMID: 36428502 PMCID: PMC9687921 DOI: 10.3390/biomedicines10112934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Animal models of epilepsy are of great importance in epileptology. They are used to study the mechanisms of epileptogenesis, and search for new genes and regulatory pathways involved in the development of epilepsy as well as screening new antiepileptic drugs. Today, many methods of modeling epilepsy in animals are used, including electroconvulsive, pharmacological in intact animals, and genetic, with the predisposition for spontaneous or refractory epileptic seizures. Due to the simplicity of manipulation and universality, genetic models of audiogenic epilepsy in rodents stand out among this diversity. We tried to combine data on the genetics of audiogenic epilepsy in rodents, the relevance of various models of audiogenic epilepsy to certain epileptic syndromes in humans, and the advantages of using of rodent strains predisposed to audiogenic epilepsy in current epileptology.
Collapse
|
12
|
Nazarova GG, Proskurnyak LP. Hereditary predisposition of water voles (Arvicola amphibius L.) to seizures in response to handling. Vavilovskii Zhurnal Genet Selektsii 2022; 26:371-377. [PMID: 35864939 PMCID: PMC9271488 DOI: 10.18699/vjgb-22-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
Finding out the hereditary predisposition to seizures in response to specif ic external stimuli is important for understanding the causes of epileptiform conditions, developing new methods for their prevention and therapies. In the water vole, individuals with convulsive seizures are found both in natural and laboratory conditions. The data of long-lasting maintenance and breeding of water voles in vivarium conditions were analyzed in order to establish a hereditary predisposition to convulsive seizures, and the inf luence of sex and age on their development. In the vivarium, seizures are provoked by handling and are observed in 2.4 % of voles caught in the natural population with cyclic f luctuations in abundance. Seizures are observed more often in individuals caught in the phases of decline and depression of abundance than in individuals caught in the phases of rise or peak. Convulsive states are probably an element of adaptive behavior formed in the predator-prey system. In natural conditions, individuals predisposed to convulsive seizures may have a selective advantage when under increasing pressure from predators. Convulsive seizures in response to handling were noted in 29.8 % of descendants of captive-bred water voles. The proportion of such individuals increased signif icantly if one or both parents had convulsive states, which indicates the presence of a hereditary predisposition to seizures. In parent–offspring pairs, a signif icant correlation was found between the average age of onset of the f irst seizures in parents and their offspring, r = 0.42, p <0.01. The minimum age of registration
of seizures in the water vole is 39 days, the maximum is 1105 days, and the median is 274 days. Predisposition to
seizures is not related to sex. Genes that control the occurrence of seizures have a pleiotropic effect on life span, since
individuals with seizures live longer in vivarium conditions than individuals with a normal phenotype. The water
vole can serve as a suitable model object for studying the nature of convulsive states and the evolution of longevity
Collapse
Affiliation(s)
- G. G. Nazarova
- Institute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Sciences
| | - L. P. Proskurnyak
- Institute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
13
|
Neuroplastic alterations in cannabinoid receptors type 1 (CB1) in animal models of epileptic seizures. Neurosci Biobehav Rev 2022; 137:104675. [PMID: 35460705 DOI: 10.1016/j.neubiorev.2022.104675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/16/2022] [Accepted: 04/17/2022] [Indexed: 01/01/2023]
Abstract
Currently, there is an urgent need to better comprehend neuroplastic alterations in cannabinoid receptors type 1 (CB1) and to understand the biological meaning of these alterations in epileptic disorders. The present study reviewed neuroplastic changes in CB1 distribution, expression, and functionality in animal models of epileptic seizures. Neuroplastic alterations in CB1 were consistently observed in chemical, genetic, electrical, and febrile seizure models. Most studies assessed changes in hippocampal and cortical CB1, while thalamic, hypothalamic, and brainstem nuclei were rarely investigated. Additionally, the relationship between CB1 alteration and the control of brain excitability through modulation of specific neuronal networks, such as striatonigral, nigrotectal and thalamocortical pathways, and inhibitory projections to hippocampal pyramidal neurons, were all presented and discussed in the present review. Neuroplastic alterations in CB1 detected in animal models of epilepsy may reflect two different scenarios: (1) endogenous adaptations aimed to control neuronal hyperexcitability in epilepsy or (2) pathological alterations that facilitate neuronal hyperexcitability. Additionally, a better comprehension of neuroplastic and functional alterations in CB1 can improve pharmacological therapies for epilepsies and their comorbidities.
Collapse
|
14
|
Midzyanovskaya IS, Birioukova LM, Storvik M, Luijtelaar GV, Tuomisto LM. The prefrontal cortex shows widespread decrease in H3 histamine receptor binding densities in rats with genetic generalized epilepsies. Epilepsy Res 2022; 182:106921. [DOI: 10.1016/j.eplepsyres.2022.106921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/19/2022] [Accepted: 04/01/2022] [Indexed: 11/03/2022]
|
15
|
Lazarini-Lopes W, Silva-Cardoso GK, Leite-Panissi CRA, Garcia-Cairasco N. Increased TRPV1 Channels and FosB Protein Expression Are Associated with Chronic Epileptic Seizures and Anxiogenic-like Behaviors in a Preclinical Model of Temporal Lobe Epilepsy. Biomedicines 2022; 10:biomedicines10020416. [PMID: 35203625 PMCID: PMC8962263 DOI: 10.3390/biomedicines10020416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Epilepsies are neurological disorders characterized by chronic seizures and their related neuropsychiatric comorbidities, such as anxiety. The Transient Receptor Potential Vanilloid type-1 (TRPV1) channel has been implicated in the modulation of seizures and anxiety-like behaviors in preclinical models. Here, we investigated the impact of chronic epileptic seizures in anxiety-like behavior and TRPV1 channels expression in a genetic model of epilepsy, the Wistar Audiogenic Rat (WAR) strain. WARs were submitted to audiogenic kindling (AK), a preclinical model of temporal lobe epilepsy (TLE) and behavioral tests were performed in the open-field (OF), and light-dark box (LDB) tests 24 h after AK. WARs displayed increased anxiety-like behavior and TRPV1R expression in the hippocampal CA1 area and basolateral amygdala nucleus (BLA) when compared to control Wistar rats. Chronic seizures increased anxiety-like behaviors and TRPV1 and FosB expression in limbic and brainstem structures involved with epilepsy and anxiety comorbidity, such as the hippocampus, superior colliculus, and periaqueductal gray matter. Therefore, these results highlight previously unrecognized alterations in TRPV1 expression in brain structures involved with TLE and anxiogenic-like behaviors in a genetic model of epilepsy, the WAR strain, supporting an important role of TRPV1 in the modulation of neurological disorders and associated neuropsychiatric comorbidities.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
| | - Gleice Kelli Silva-Cardoso
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Christie Ramos Andrade Leite-Panissi
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
- Physiology Department, Ribeirão Preto School of Medicine and Neuroscience and Behavioral Sciences Department, University of São Paulo, Ribeirão Preto 14049-900, Brazil
- Correspondence:
| |
Collapse
|