1
|
El-Shamarka MEA, Aboulthana WM, Omar NI, Mahfouz MM. Evaluation of the biological efficiency of Terminalia chebula fruit extract against neurochemical changes induced in brain of diabetic rats: an epigenetic study. Inflammopharmacology 2024; 32:1439-1460. [PMID: 38329710 PMCID: PMC11006788 DOI: 10.1007/s10787-024-01428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Diabetes mellitus (DM) is a chronic and progressive metabolic disorder that can stimulate neuroinflammation and increase oxidative stress in the brain. Therefore, the present study was aimed to assess the efficacy of ethanolic Terminalia chebula extract against the neurochemical and histopathological changes induced in the brains of diabetic rats. The study clarified the reduction in oxidative stress induced in the brains of diabetic rats by the significant (P ≤ 0.05) increase in levels of the antioxidants with decreasing the peroxidation products via ethanolic T. chebula extract at both doses (400 and 600 mg/kg). Moreover, T. chebula extract improved the brain integrity by lowering levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), β-amyloid (Aβ) content, monocyte chemoattractant protein-1 (MCP-1) and acetylcholine esterase (ACHE) significantly (P ≤ 0.05) in a dose dependent manner compared to brain of diabetic rats. Severe nuclear pyknosis and degeneration were noticed in neurons of the cerebral cortex, hippocampus and striatum in brains of diabetic rats. The severity of these alterations decreased with T. chebula extract at a dose of 600 mg/kg compared to the other treated groups. The different electrophoretic protein and isoenzyme assays revealed that the lowest similarity index (SI%) values exist in the brains of diabetic rats compared to the control group. The quantity of the most native proteins and isoenzyme types increased significantly (P ≤ 0.05) in the brains of diabetic rats, and these electrophoretic variations were completely diminished by T. chebula extract. The study concluded that T. chebula extract ameliorated the biochemical, histopathological and electrophoretic abnormalities induced in the brains of diabetic rats when administered at a dose of 600 mg/kg.
Collapse
Affiliation(s)
- Marwa E A El-Shamarka
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Wael Mahmoud Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
| | - Nagwa Ibrahim Omar
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Marwa M Mahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Shibīn Al-Kawm, Egypt
| |
Collapse
|
2
|
Hsieh HH, Chu PA, Lin YH, Kao YCJ, Chung YH, Hsu ST, Mo JM, Wu CY, Peng SL. Imaging diabetic cardiomyopathy in a type 1 diabetic rat model using 18F-FEPPA PET. Nucl Med Biol 2024; 128-129:108878. [PMID: 38324923 DOI: 10.1016/j.nucmedbio.2024.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Diabetic patients often experience chronic inflammation and fibrosis in their cardiac tissues, highlighting the pressing need for the development of sensitive diagnostic methods for longitudinal assessment of diabetic cardiomyopathy. This study aims to evaluate the significance of an inflammatory marker known as translocator protein (TSPO) in a positron emission tomography (PET) protocol for longitudinally monitoring cardiac dysfunction in a diabetic animal model. Additionally, we compared the commonly used radiotracer, 18F-fluoro-2-deoxy-d-glucose (18F-FDG). METHODS Fourteen 7-week-old female Sprague-Dawley rats were used in this study. Longitudinal PET experiments were conducted using 18F-N-2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide (18F-FEPPA) (n = 3), the TSPO radiotracer, and 18F-FDG (n = 3), both before and after the onset of diabetes. Histological and immunohistochemical staining assays were also conducted in both the control (n = 4) and diabetes (n = 4) groups. RESULTS Results indicated a significant increase in cardiac tissue uptake of 18F-FEPPA after the onset of diabetes (P < 0.05), aligning with elevated TSPO levels observed in diabetic animals according to histological data. Conversely, the uptake of 18F-FDG in cardiac tissue significantly decreased after the onset of diabetes (P < 0.05). CONCLUSION These findings suggest that 18F-FEPPA can function as a sensitive probe for detecting chronic inflammation and fibrosis in the cardiac tissues of diabetic animals.
Collapse
Affiliation(s)
- Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
| | - Pei-An Chu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Chieh Jill Kao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
| | - Yi-Hsiu Chung
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Ting Hsu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jia-Min Mo
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan.
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
3
|
Wu CY, Lin YH, Hsieh HH, Chung YH, Hsu ST, Peng SL. The effect of estrogen therapy on cerebral metabolism in diabetic female rats. Comput Struct Biotechnol J 2023; 21:4769-4776. [PMID: 37841332 PMCID: PMC10570627 DOI: 10.1016/j.csbj.2023.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
The impact of estrogen on brain function, especially in individuals with diabetes, remains uncertain. This study aims to compare cerebral glucose metabolism levels in intact rats, ovariectomized (OVX) rats, and 17β-estradiol (E2)-treated OVX diabetic female rats. Sixteen rats were administered a single intraperitoneal injection of 70 mg/kg streptozotocin (STZ) to induce diabetes (intact, n = 6; OVX, n = 6; OVX+E2-treated, n = 4). Additionally, 18 rats received an equivalent solvent dose via intraperitoneal injection (intact, n = 6; OVX, n = 6; OVX+E2-treated, n = 6). After 4 weeks of STZ or solvent administration, positron emission tomography scans with 18F-fluorodeoxyglucose (18F-FDG) injection were employed to assess cerebral glucose metabolism. The diabetic rats exhibited substantial reductions in 18F-FDG uptake across all brain regions (all P < 0.01), in contrast to the control rats. Moreover, intact and OVX + E2-treated diabetic female rats displayed more pronounced decreases in cerebral glucose metabolism in the amygdala and hippocampus compared to OVX diabetic female rats (P < 0.05). These findings suggest that diabetes creates an environment wherein estrogen exacerbates neuropathology and intensifies neuronal activity.
Collapse
Affiliation(s)
- Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
| | - Yi-Hsiu Chung
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Ting Hsu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taiwan
| |
Collapse
|
4
|
Wu CY, Huang SM, Lin YH, Hsieh HH, Chu LWL, Yang HC, Chiu SC, Peng SL. Reproducibility of diffusion tensor imaging-derived parameters: implications for the streptozotocin-induced type 1 diabetic rats. MAGMA (NEW YORK, N.Y.) 2023; 36:631-639. [PMID: 36378408 DOI: 10.1007/s10334-022-01048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Diffusion tensor imaging (DTI) is a useful approach for studying neuronal integrity in animals. However, the test-retest reproducibility of DTI techniques in animals has not been discussed. Therefore, the first part of this work was to systematically elucidate the reliability of DTI-derived parameters in an animal study. Subsequently, we applied the DTI approach to an animal model of diabetes in a longitudinal manner. MATERIALS AND METHODS In Study 1, nine rats underwent two DTI sessions using the same scanner and protocols, with a gap of 4 weeks. The reliability of the DTI-derived parameters was evaluated in terms of sessions and raters. In Study 2, nine rats received a single intraperitoneal injection of 70 mg/kg streptozotocin (STZ) to develop diabetes. Longitudinal DTI scans were used to assess brain alterations before and 4 weeks after STZ administration. RESULTS In the test-retest evaluation, the inter-scan coefficient of variation (CoV) ranged from 3.04 to 3.73% and 2.12-2.59% for fractional anisotropy (FA) and mean diffusivity (MD), respectively, in different brain regions, suggesting excellent reproducibility. Moreover, rater-dependence had minimal effects on FA and MD quantification, with all inter-rater CoV values less than 4%. Following the onset of diabetes, FA in striatum and cortex were noted to be significantly lower relative to the period where they had not developed diabetes (both P < 0.05). However, when compared to the control group, a significant change in FA caused by diabetes was detected only in the striatum (P < 0.05), but not in the cortex. CONCLUSION These results demonstrate good inter-rater and inter-scan reliability of DTI in animal studies, and the longitudinal setting has a beneficial effect on detecting small changes in the brain due to diseases.
Collapse
Affiliation(s)
- Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, Taipei Branch, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
| | - Lok Wang Lauren Chu
- Department of Biomedical Imaging and Radiological Science, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Hui-Chieh Yang
- Department of Biomedical Imaging and Radiological Science, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
- Neuroscience and Brain Disease Center, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
| |
Collapse
|
5
|
Casado-Barragán F, Lazcano-Páez G, Larenas PE, Aguirre-Delgadillo M, Olivares-Aravena F, Witto-Oyarce D, Núñez-Allimant C, Silva K, Nguyen QM, Cárdenas P, Kassan M, Gonzalez AA. Increased Renal Medullary NOX-4 in Female but Not Male Mice during the Early Phase of Type 1 Diabetes: Potential Role of ROS in Upregulation of TGF-β1 and Fibronectin in Collecting Duct Cells. Antioxidants (Basel) 2023; 12:antiox12030729. [PMID: 36978977 PMCID: PMC10045926 DOI: 10.3390/antiox12030729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Chronic diabetes mellitus (DM) can lead to kidney damage associated with increased reactive oxygen species (ROS), proteinuria, and tubular damage. Altered protein expression levels of transforming growth factor-beta 1 (TGF-β1), fibronectin, and renal NADPH oxidase (NOX-4) are associated with the profibrotic phenotype in renal tubular cells. NOX-4 is one of the primary sources of ROS in the diabetic kidney and responsible for the induction of profibrotic factors in collecting duct (CD) cells. The renal medulla is predominantly composed of CDs; in DM, these CD cells are exposed to high glucose (HG) load. Currently there is no published literature describing the expression of these markers in the renal medulla in male and female mice during the early phase of DM, or the role of NOX-4-induced ROS. Our aim was to evaluate changes in transcripts and protein abundances of TGF-β1, fibronectin, and NOX-4 along with ROS levels in renal medullary tissues from male and female mice during a short period of streptozotocin (STZ)-induced type 1 DM and the effect of HG in cultured CD cells. CF-1 mice were injected with or without a single dose of STZ (200 mg/kg) and euthanized at day 6. STZ females showed higher expression of fibronectin and TGF-β1 when compared to control mice of either gender. Interestingly, STZ female mice showed a >30-fold increase on mRNA levels and a 3-fold increase in protein levels of kidney medullary NOX-4. Both male and female STZ mice showed increased intrarenal ROS. In primary cultures of inner medullary CD cells exposed to HG over 48 h, the expression of TGF-β1, fibronectin, and NOX-4 were augmented. M-1 CD cells exposed to HG showed increased ROS, fibronectin, and TGF-β1; this effect was prevented by NOX-4 inhibition. Our data suggest that at as early as 6 days of STZ-induced DM, the expression of profibrotic markers TGF-β1 and fibronectin increases in renal medullary CD cells. Antioxidants mechanisms in male and female in renal medullary tissues seems to be differentially regulated by the actions of NOX-4.
Collapse
Affiliation(s)
- Felipe Casado-Barragán
- Institute of Chemisry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2950, Chile
| | - Geraldine Lazcano-Páez
- Institute of Chemisry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2950, Chile
| | - Paulina E. Larenas
- Institute of Chemisry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2950, Chile
| | | | | | - Daniela Witto-Oyarce
- Institute of Chemisry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2950, Chile
| | - Camila Núñez-Allimant
- Institute of Chemisry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2950, Chile
| | - Katherin Silva
- Institute of Chemisry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2950, Chile
| | - Quynh My Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Pilar Cárdenas
- Institute of Chemisry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2950, Chile
| | - Modar Kassan
- College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37917, USA
| | - Alexis A. Gonzalez
- Institute of Chemisry, Pontificia Universidad Católica de Valparaíso, Valparaíso 2950, Chile
- Correspondence:
| |
Collapse
|
6
|
Lopez-Vilaret KM, Fernandez-Alvarez M, Shokri-Kojori E, Tomasi D, Cantero JL, Atienza M. Pre-diabetes is associated with altered functional connectivity density in cortical regions of the default-mode network. Front Aging Neurosci 2022; 14:1034355. [PMID: 36438011 PMCID: PMC9686287 DOI: 10.3389/fnagi.2022.1034355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/25/2022] [Indexed: 09/29/2023] Open
Abstract
Insulin resistance and glucose dysregulation are associated with patterns of regional brain hypometabolism characteristic of Alzheimer's disease (AD). As predicted by evidence linking brain glucose metabolism to brain functional connectivity, type 2 diabetes is accompanied by altered functional connectivity density (FCD) in regions highly vulnerable to AD, but whether these alterations start at earlier stages such as pre-diabetes remain to be elucidated. Here, in addition to assessing whether pre-diabetes leads to a functional reorganization of densely connected cortical areas (hubs), we will assess whether such reorganization is conditioned by sex and/or insulin resistance, and contributes to improved cognition. One hundred and forty-four cognitively unimpaired middle-aged and older adults (55-78 years, 79 females), 73 with normoglycemia and 71 with pre-diabetes, underwent resting-state fMRI scanning. We first computed FCD mapping on cortical surfaces to determine the number of short- and long-range functional connections of every vertex in the cortex, and next used hubs showing aberrant FCD as seeds for the resting-state functional connectivity (rs-FC) calculation. ANCOVAs and linear multiple regression analyses adjusted by demographic and cardiometabolic confounders using frequentist and Bayesian approaches were applied. Analyses revealed higher long-range FCD in the right precuneus of pre-diabetic females and lower short-range FCD in the left medial orbitofrontal cortex (mOFC) of pre-diabetic individuals with higher insulin resistance. Although the mOFC also showed altered rs-FC patterns with other regions of the default mode network in pre-diabetic individuals, it was FCD of the precuneus and mOFC, and not the magnitude of their rs-FC, that was associated with better planning abilities and Mini-Mental State Examination (MMSE) scores. Results suggest that being female and/or having high insulin resistance exacerbate pre-diabetes-induced alterations in the FCD of hubs of the default-mode network that are particularly vulnerable to AD pathology. These changes in brain network organization appear to be compensatory for pre-diabetic females, likely assisting them to maintain cognitive functioning at early stages of glucose dysregulation.
Collapse
Affiliation(s)
| | - Marina Fernandez-Alvarez
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| |
Collapse
|
7
|
Huang SM, Wu CY, Lin YH, Hsieh HH, Yang HC, Chiu SC, Peng SL. Differences in brain activity between normal and diabetic rats under isoflurane anesthesia: a resting-state functional MRI study. BMC Med Imaging 2022; 22:136. [PMID: 35927630 PMCID: PMC9354416 DOI: 10.1186/s12880-022-00867-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Altered neural activity based on the fractional amplitude of low-frequency fluctuations (fALFF) has been reported in patients with diabetes. However, whether fALFF can differentiate healthy controls from diabetic animals under anesthesia remains unclear. The study aimed to elucidate the changes in fALFF in a rat model of diabetes under isoflurane anesthesia. METHODS The first group of rats (n = 5) received a single intraperitoneal injection of 70 mg/kg streptozotocin (STZ) to cause the development of diabetes. The second group of rats (n = 7) received a single intraperitoneal injection of the same volume of solvent. Resting-state functional magnetic resonance imaging was used to assess brain activity at 4 weeks after STZ or solvent administration. RESULTS Compared to the healthy control animals, rats with diabetes showed significantly decreased fALFF in various brain regions, including the cingulate cortex, somatosensory cortex, insula, and striatum (all P < 0.05). The decreased fALFF suggests the aberrant neural activities in the diabetic rats. No regions were detected in which the control group had a lower fALFF than that in the diabetes group. CONCLUSIONS The results of this study demonstrated that the fALFF could be used to differentiate healthy controls from diabetic animals, providing meaningful information regarding the neurological pathophysiology of diabetes in animal models.
Collapse
Affiliation(s)
- Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, Taipei Branch, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, Taipei Branch, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, Taipei Branch, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Chieh Yang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan. .,Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
de Paula Faria D, Estessi de Souza L, Duran FLDS, Buchpiguel CA, Britto LR, Crippa JADS, Filho GB, Real CC. Cannabidiol Treatment Improves Glucose Metabolism and Memory in Streptozotocin-Induced Alzheimer’s Disease Rat Model: A Proof-of-Concept Study. Int J Mol Sci 2022; 23:ijms23031076. [PMID: 35163003 PMCID: PMC8835532 DOI: 10.3390/ijms23031076] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/27/2022] Open
Abstract
An early and persistent sign of Alzheimer’s disease (AD) is glucose hypometabolism, which can be evaluated by positron emission tomography (PET) with 18F-2-fluoro-2-deoxy-D-glucose ([18F]FDG). Cannabidiol has demonstrated neuroprotective and anti-inflammatory properties but has not been evaluated by PET imaging in an AD model. Intracerebroventricular (icv) injection of streptozotocin (STZ) is a validated model for hypometabolism observed in AD. This proof-of-concept study evaluated the effect of cannabidiol treatment in the brain glucose metabolism of an icv-STZ AD model by PET imaging. Wistar male rats received 3 mg/kg of STZ and [18F]FDG PET images were acquired before and 7 days after STZ injection. Animals were treated with intraperitoneal cannabidiol (20 mg/kg—STZ–cannabidiol) or saline (STZ–saline) for one week. Novel object recognition was performed to evaluate short-term and long-term memory. [18F]FDG uptake in the whole brain was significantly lower in the STZ–saline group. Voxel-based analysis revealed a hypometabolism cluster close to the lateral ventricle, which was smaller in STZ–cannabidiol animals. The brain regions with more evident hypometabolism were the striatum, motor cortex, hippocampus, and thalamus, which was not observed in STZ–cannabidiol animals. In addition, STZ–cannabidiol animals revealed no changes in memory index. Thus, this study suggests that cannabidiol could be an early treatment for the neurodegenerative process observed in AD.
Collapse
Affiliation(s)
- Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology, Faculdade de Medicina, University of Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (L.E.d.S.); (C.A.B.)
- Correspondence: (D.d.P.F.); (C.C.R.)
| | - Larissa Estessi de Souza
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology, Faculdade de Medicina, University of Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (L.E.d.S.); (C.A.B.)
| | - Fabio Luis de Souza Duran
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina, University of Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (F.L.d.S.D.); (G.B.F.)
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology, Faculdade de Medicina, University of Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (L.E.d.S.); (C.A.B.)
| | - Luiz Roberto Britto
- Institute of Biomedical Science, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil;
| | - José Alexandre de Souza Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto 14051-160, SP, Brazil;
| | - Geraldo Busatto Filho
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina, University of Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (F.L.d.S.D.); (G.B.F.)
| | - Caroline Cristiano Real
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology, Faculdade de Medicina, University of Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (L.E.d.S.); (C.A.B.)
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculdade de Medicina, University of Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (F.L.d.S.D.); (G.B.F.)
- Correspondence: (D.d.P.F.); (C.C.R.)
| |
Collapse
|