1
|
Lee MS, Lin ECY, Sivapatham A, Leiferman EM, Jiao H, Lu Y, Nemke BW, Leiferman M, Markel MD, Li WJ. Autologous iPSC- and MSC-derived chondrocyte implants for cartilage repair in a miniature pig model. Stem Cell Res Ther 2025; 16:86. [PMID: 39988676 PMCID: PMC11849328 DOI: 10.1186/s13287-025-04215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 02/10/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) have greater potential for generating chondrocytes without hypertrophic and fibrotic phenotypes compared to bone marrow-derived mesenchymal stem/stromal cells (BMSCs). However, there is a lack of research demonstrating the use of autologous iMSCs for repairing articular chondral lesions in large animal models. In this study, we aimed to evaluate the effectiveness of autologous miniature pig (minipig) iMSC-chondrocyte (iMSC-Ch)-laden implants in comparison to autologous BMSC-chondrocyte (BMSC-Ch)-laden implants for cartilage repair in porcine femoral condyles. METHODS iMSCs and BMSCs were seeded into fibrin glue/nanofiber constructs and cultured with chondrogenic induction media for 7 days before implantation. To assess the regenerative capacity of the cells, 19 skeletally mature Yucatan minipigs were randomly divided into microfracture control, acellular scaffold, iMSC, and BMSC subgroups. A cylindrical defect measuring 7 mm in diameter and 0.6 mm in depth was created on the articular cartilage surface without violating the subchondral bone. The defects were then left untreated or treated with acellular or cellular implants. RESULTS Both cellular implant-treated groups exhibited enhanced joint repair compared to the microfracture and acellular control groups. Immunofluorescence analysis yielded significant findings, showing that cartilage treated with iMSC-Ch implants exhibited higher expression of COL2A1 and minimal to no expression of COL1A1 and COL10A1, in contrast to the BMSC-Ch-treated group. This indicates that the iMSC-Ch implants generated more hyaline cartilage-like tissue compared to the BMSC-Ch implants. CONCLUSIONS Our findings contribute to filling the knowledge gap regarding the use of autologous iPSC derivatives for cartilage repair in a translational animal model. Moreover, these results highlight their potential as a safe and effective therapeutic strategy.
Collapse
Affiliation(s)
- Ming-Song Lee
- Musculoskeletal Biology and Regenerative Medicine Laboratory, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Eric Chang-Yi Lin
- Musculoskeletal Biology and Regenerative Medicine Laboratory, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Athillesh Sivapatham
- Musculoskeletal Biology and Regenerative Medicine Laboratory, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Ellen M Leiferman
- Musculoskeletal Biology and Regenerative Medicine Laboratory, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Hongli Jiao
- Musculoskeletal Biology and Regenerative Medicine Laboratory, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Yan Lu
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Brett W Nemke
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Matthew Leiferman
- Musculoskeletal Biology and Regenerative Medicine Laboratory, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Mark D Markel
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Wan-Ju Li
- Musculoskeletal Biology and Regenerative Medicine Laboratory, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA.
| |
Collapse
|
2
|
Leonova EI, Chirinskaite AV, Sopova JV. A systematic review of the safety and efficacy of platelet-rich plasma for the treatment of posttraumatic knee osteoarthritis. KAZAN MEDICAL JOURNAL 2024; 105:637-647. [DOI: 10.17816/kmj568204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Injury of the knee joint can lead to a range of adverse outcomes and significantly contributes to the development of the knee osteoarthritis. Currently, autologous platelet-rich plasma is used as a promising and safe method of treating osteoarthritis. Such plasma contains various growth factors, some of which are secreted after platelet activation. These factors can trigger a regenerative response and improve the metabolic functions of damaged structures. However, there are different protocols for preparing platelet-rich plasma, which results in preparations with different amounts of bioactive substances. As a result, the data obtained on the effect of platelet-rich plasma on the restoration of hyaline cartilage of the knee joint are very contradictory. A search for publications on a given topic was performed in the eLIBRARY, PubMed (MEDLINE), Ovid, Science Direct, Google Scholar databases, and also a search was conducted for clinical trial data on the treatment of knee osteoarthritis with platelet-rich plasma over the past 20 years. Publications dealing with other aspects of the application of this technology were excluded from the search results. An analysis of published clinical trial results found that, in most cases, patients treated with platelet-rich plasma reported improved pain and joint function, with only three studies showing no difference between platelet-rich plasma and placebo. Thus, this technology is generally promising for use in the treatment of knee osteoarthritis, however, methods of obtaining and activating platelet-rich plasma, as well as the age and comorbidities of the patient, may affect the effectiveness of therapy.
Collapse
Affiliation(s)
- Elena I. Leonova
- Center for Transgenesis and Genome Editing, Institute of Translational Biomedicine, St. Petersburg State University
| | - Angelina V. Chirinskaite
- Center for Transgenesis and Genome Editing, Institute of Translational Biomedicine, St. Petersburg State University
| | - Julia V. Sopova
- Center for Transgenesis and Genome Editing, Institute of Translational Biomedicine, St. Petersburg State University
| |
Collapse
|
3
|
Vakhrushev IV, Basok YB, Baskaev KK, Novikova VD, Leonov GE, Grigoriev AM, Belova AD, Kirsanova LA, Lupatov AY, Burunova VV, Kovalev AV, Makarevich PI, Sevastianov VI, Yarygin KN. Cartilage-Specific Gene Expression and Extracellular Matrix Deposition in the Course of Mesenchymal Stromal Cell Chondrogenic Differentiation in 3D Spheroid Culture. Int J Mol Sci 2024; 25:5695. [PMID: 38891883 PMCID: PMC11172056 DOI: 10.3390/ijms25115695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Articular cartilage damage still remains a major problem in orthopedical surgery. The development of tissue engineering techniques such as autologous chondrocyte implantation is a promising way to improve clinical outcomes. On the other hand, the clinical application of autologous chondrocytes has considerable limitations. Mesenchymal stromal cells (MSCs) from various tissues have been shown to possess chondrogenic differentiation potential, although to different degrees. In the present study, we assessed the alterations in chondrogenesis-related gene transcription rates and extracellular matrix deposition levels before and after the chondrogenic differentiation of MSCs in a 3D spheroid culture. MSCs were obtained from three different tissues: umbilical cord Wharton's jelly (WJMSC-Wharton's jelly mesenchymal stromal cells), adipose tissue (ATMSC-adipose tissue mesenchymal stromal cells), and the dental pulp of deciduous teeth (SHEDs-stem cells from human exfoliated deciduous teeth). Monolayer MSC cultures served as baseline controls. Newly formed 3D spheroids composed of MSCs previously grown in 2D cultures were precultured for 2 days in growth medium, and then, chondrogenic differentiation was induced by maintaining them in the TGF-β1-containing medium for 21 days. Among the MSC types studied, WJMSCs showed the most similarities with primary chondrocytes in terms of the upregulation of cartilage-specific gene expression. Interestingly, such upregulation occurred to some extent in all 3D spheroids, even prior to the addition of TGF-β1. These results confirm that the potential of Wharton's jelly is on par with adipose tissue as a valuable cell source for cartilage engineering applications as well as for the treatment of osteoarthritis. The 3D spheroid environment on its own acts as a trigger for the chondrogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Igor V. Vakhrushev
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.K.B.); (V.D.N.); (G.E.L.); (V.V.B.); (K.N.Y.)
| | - Yulia B. Basok
- Department for Biomedical Technologies and Tissue Engineering, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow 123182, Russia; (Y.B.B.); (A.M.G.); (A.D.B.); (L.A.K.); (V.I.S.)
| | - Konstantin K. Baskaev
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.K.B.); (V.D.N.); (G.E.L.); (V.V.B.); (K.N.Y.)
| | - Victoria D. Novikova
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.K.B.); (V.D.N.); (G.E.L.); (V.V.B.); (K.N.Y.)
| | - Georgy E. Leonov
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.K.B.); (V.D.N.); (G.E.L.); (V.V.B.); (K.N.Y.)
| | - Alexey M. Grigoriev
- Department for Biomedical Technologies and Tissue Engineering, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow 123182, Russia; (Y.B.B.); (A.M.G.); (A.D.B.); (L.A.K.); (V.I.S.)
| | - Aleksandra D. Belova
- Department for Biomedical Technologies and Tissue Engineering, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow 123182, Russia; (Y.B.B.); (A.M.G.); (A.D.B.); (L.A.K.); (V.I.S.)
| | - Ludmila A. Kirsanova
- Department for Biomedical Technologies and Tissue Engineering, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow 123182, Russia; (Y.B.B.); (A.M.G.); (A.D.B.); (L.A.K.); (V.I.S.)
| | - Alexey Y. Lupatov
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.K.B.); (V.D.N.); (G.E.L.); (V.V.B.); (K.N.Y.)
| | - Veronika V. Burunova
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.K.B.); (V.D.N.); (G.E.L.); (V.V.B.); (K.N.Y.)
| | - Alexey V. Kovalev
- Priorov Central Institute for Trauma and Orthopedics, Moscow 127299, Russia;
| | - Pavel I. Makarevich
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, Moscow 119192, Russia;
| | - Victor I. Sevastianov
- Department for Biomedical Technologies and Tissue Engineering, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow 123182, Russia; (Y.B.B.); (A.M.G.); (A.D.B.); (L.A.K.); (V.I.S.)
- Institute of Biomedical Research and Technology, Moscow 123557, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.K.B.); (V.D.N.); (G.E.L.); (V.V.B.); (K.N.Y.)
| |
Collapse
|
4
|
Bozhokin MS, Bozhkova SA, Sopova JV, Mikhailova ER, Marchenko DV, Khotin MG. Effect of recombinant Sox9 protein on the expression of cartilage-specific genes in human dermal fibroblasts cell culture. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.90447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction: Damage to the hyaline layer of large joints resulting from injuries or age-related changes restricts their mobility. The repair of these disorders is an actual issue in medicine. One of the promising therapies is the usage of cell engineering constructs based on a biodegradable scaffold and a modified cell culture. A frequently used method to modify the proliferation of cell culture for tissue engineering of hyaline cartilage, which makes it possible to introduce an experimental technique into clinical practice, is the application of recombinant proteins that affect chondrogenesis and lead to increase synthesis of extracellular matrix proteins. The goal of this work was to elucidate the effect of the key transcription factor in the chondrogenesis process – Sox9 protein – on the expression of genes responsible for chondrogenesis (Tgfβ3, Sox9, Acan, Comp, Col2a1).
Materials and methods: Human dermal fibroblasts were used as a cell culture; recombinant Sox9 was added at each change of medium; the modification was carried out for 21 days, and difference in gene expression was determined by real-time PCR and -ΔΔCt method.
Results and discussion: To assess the effectiveness of fibroblast modification, we analyzed the changing of expression of genes responsible for chondrogenesis (Tgfß3, Sox9, Col2a1, Acan, Comp). We studied the direct effect of different concentrations of the recombinant Sox9 protein on the proliferation of dermal fibroblasts in the chondrogenic direction. We showed that the addition of the recombinant Sox9 protein in various concentration did not significantly change the expression of both the genes encoding proteins of the extracellular matrix of hyaline cartilage (Acan, Col2a1, Comp) and the genes encoding chondrogenesis inducers (Tgfß3, Sox9).
Conclusion: As a result of the experiments, it was shown that the recombinant Sox9 protein has practically no effect on chondrogenic differentiation and does not significantly change the expression of chondrogenesis genes.
Collapse
|
5
|
Shi Y, Cao C, Yang F, Shao J, Hu X, Cheng J, Wang J, Ao Y. Inhibition of LDL receptor-related protein 3 suppresses chondrogenesis of stem cells, inhibits proliferation, and promotes apoptosis. Biochem Biophys Res Commun 2022; 635:77-83. [DOI: 10.1016/j.bbrc.2022.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
|
6
|
Zheng J, Xie Y, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Stepwise Proliferation and Chondrogenic Differentiation of Mesenchymal Stem Cells in Collagen Sponges under Different Microenvironments. Int J Mol Sci 2022; 23:ijms23126406. [PMID: 35742851 PMCID: PMC9223568 DOI: 10.3390/ijms23126406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Biomimetic microenvironments are important for controlling stem cell functions. In this study, different microenvironmental conditions were investigated for the stepwise control of proliferation and chondrogenic differentiation of human bone-marrow-derived mesenchymal stem cells (hMSCs). The hMSCs were first cultured in collagen porous sponges and then embedded with or without collagen hydrogels for continual culture under different culture conditions. The different influences of collagen sponges, collagen hydrogels, and induction factors were investigated. The collagen sponges were beneficial for cell proliferation. The collagen sponges also promoted chondrogenic differentiation during culture in chondrogenic medium, which was superior to the effect of collagen sponges embedded with hydrogels without loading of induction factors. However, collagen sponges embedded with collagen hydrogels and loaded with induction factors had the same level of promotive effect on chondrogenic differentiation as collagen sponges during in vitro culture in chondrogenic medium and showed the highest promotive effect during in vivo subcutaneous implantation. The combination of collagen sponges with collagen hydrogels and induction factors could provide a platform for cell proliferation at an early stage and subsequent chondrogenic differentiation at a late stage. The results provide useful information for the chondrogenic differentiation of stem cells and cartilage tissue engineering.
Collapse
Affiliation(s)
- Jing Zheng
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yan Xie
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan;
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Correspondence: ; Tel.: +81-29-860-4496
| |
Collapse
|
7
|
Hayes AJ, Farrugia BL, Biose IJ, Bix GJ, Melrose J. Perlecan, A Multi-Functional, Cell-Instructive, Matrix-Stabilizing Proteoglycan With Roles in Tissue Development Has Relevance to Connective Tissue Repair and Regeneration. Front Cell Dev Biol 2022; 10:856261. [PMID: 35433700 PMCID: PMC9010944 DOI: 10.3389/fcell.2022.856261] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022] Open
Abstract
This review highlights the multifunctional properties of perlecan (HSPG2) and its potential roles in repair biology. Perlecan is ubiquitous, occurring in vascular, cartilaginous, adipose, lymphoreticular, bone and bone marrow stroma and in neural tissues. Perlecan has roles in angiogenesis, tissue development and extracellular matrix stabilization in mature weight bearing and tensional tissues. Perlecan contributes to mechanosensory properties in cartilage through pericellular interactions with fibrillin-1, type IV, V, VI and XI collagen and elastin. Perlecan domain I - FGF, PDGF, VEGF and BMP interactions promote embryonic cellular proliferation, differentiation, and tissue development. Perlecan domain II, an LDLR-like domain interacts with lipids, Wnt and Hedgehog morphogens. Perlecan domain III binds FGF-7 and 18 and has roles in the secretion of perlecan. Perlecan domain IV, an immunoglobulin repeat domain, has cell attachment and matrix stabilizing properties. Perlecan domain V promotes tissue repair through interactions with VEGF, VEGF-R2 and α2β1 integrin. Perlecan domain-V LG1-LG2 and LG3 fragments antagonize these interactions. Perlecan domain V promotes reconstitution of the blood brain barrier damaged by ischemic stroke and is neurogenic and neuroprotective. Perlecan-VEGF-VEGFR2, perlecan-FGF-2 and perlecan-PDGF interactions promote angiogenesis and wound healing. Perlecan domain I, III and V interactions with platelet factor-4 and megakaryocyte and platelet inhibitory receptor promote adhesion of cells to implants and scaffolds in vascular repair. Perlecan localizes acetylcholinesterase in the neuromuscular junction and is of functional significance in neuromuscular control. Perlecan mutation leads to Schwartz-Jampel Syndrome, functional impairment of the biomechanical properties of the intervertebral disc, variable levels of chondroplasia and myotonia. A greater understanding of the functional working of the neuromuscular junction may be insightful in therapeutic approaches in the treatment of neuromuscular disorders. Tissue engineering of salivary glands has been undertaken using bioactive peptides (TWSKV) derived from perlecan domain IV. Perlecan TWSKV peptide induces differentiation of salivary gland cells into self-assembling acini-like structures that express salivary gland biomarkers and secrete α-amylase. Perlecan also promotes chondroprogenitor stem cell maturation and development of pluripotent migratory stem cell lineages, which participate in diarthrodial joint formation, and early cartilage development. Recent studies have also shown that perlecan is prominently expressed during repair of adult human articular cartilage. Perlecan also has roles in endochondral ossification and bone development. Perlecan domain I hydrogels been used in tissue engineering to establish heparin binding growth factor gradients that promote cell migration and cartilage repair. Perlecan domain I collagen I fibril scaffolds have also been used as an FGF-2 delivery system for tissue repair. With the availability of recombinant perlecan domains, the development of other tissue repair strategies should emerge in the near future. Perlecan co-localization with vascular elastin in the intima, acts as a blood shear-flow endothelial sensor that regulates blood volume and pressure and has a similar role to perlecan in canalicular fluid, regulating bone development and remodeling. This complements perlecan's roles in growth plate cartilage and in endochondral ossification to form the appendicular and axial skeleton. Perlecan is thus a ubiquitous, multifunctional, and pleomorphic molecule of considerable biological importance. A greater understanding of its diverse biological roles and functional repertoires during tissue development, growth and disease will yield valuable insights into how this impressive proteoglycan could be utilized successfully in repair biology.
Collapse
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Wales, United Kingdom
| | - Brooke L. Farrugia
- Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Ifechukwude J. Biose
- Departments of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Gregory J. Bix
- Departments of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital, The Faculty of Medicine and Health, The University of Sydney, St. Leonard’s, NSW, Australia
| |
Collapse
|