1
|
Fang C, Zhou W. Genetic background of neonatal hypokalemia. Pediatr Nephrol 2025; 40:301-317. [PMID: 39283520 DOI: 10.1007/s00467-024-06492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/05/2024] [Accepted: 08/07/2024] [Indexed: 12/24/2024]
Abstract
Neonatal hypokalemia (defined as a serum potassium level <3.5 mEq/L) is the most common electrolyte disorder encountered in clinical practice. In addition to common secondary causes, primary genetic etiologies are also closely associated with hypokalemia. Currently, a systematic characterization of these genetic disorders is lacking, making early recognition challenging and clinical management uncertain. This review will aid clinicians by summarizing the genetic background of neonatal hypokalemia from two aspects: (1) increased excretion of K+, whereby genetic factors primarily lead to increased renal Na+ influx, decreased H+ efflux, or reduced Cl- influx, ultimately resulting in increased K+ efflux; and (2) decreased extracellular distribution of K+, whereby genetic factors result in abnormalities in transmembrane ion channels, reducing outward potassium currents or generating inward cation leak currents. We describe over ten genetic diseases associated with neonatal hypokalemia, which involve pathogenic variants in dozens of genes and affect multiple target organs, including the kidneys, intestines, and skeletal muscle. For example, in the renal tubules, pathogenic variants in the SLC12A1 gene encoding the Na+-K+-2Cl- cotransporter lead to renal K+ loss, causing Bartter syndrome type I; in intestinal epithelial cells, pathogenic variants in the SLC26A3 gene result in a defective Cl⁻-HCO₃⁻ exchanger, causing congenital chloride diarrhea; and in skeletal muscle, pathogenic variants in the CACNA1S gene impact membrane calcium ion channels resulting in hypokalemic periodic paralysis. Given the wide variety of organs and genetic alterations that can contribute to neonatal hypokalemia, we believe this review will provide valuable insights for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Chuchu Fang
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wenhao Zhou
- Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China.
| |
Collapse
|
2
|
Araujo-Castro M, Parra P, Martín Rojas-Marcos P, Paja Fano M, González Boillos M, Pascual-Corrales E, García Cano AM, Ruiz-Sanchez JG, Vicente Delgado A, Gómez Hoyos E, Ferreira R, García Sanz I, Recasens Sala M, Barahona San Millan R, Picón César MJ, Díaz Guardiola P, Perdomo CM, Manjón-Miguélez L, García Centeno R, Rebollo Román Á, Gracia Gimeno P, Robles Lázaro C, Morales-Ruiz M, Calatayud M, Furio Collao SA, Meneses D, Sampedro Nuñez M, Escudero Quesada V, Mena Ribas E, Sanmartín Sánchez A, Gonzalvo Diaz C, Lamas C, del Castillo Tous M, Serrano Gotarredona J, Michalopoulou Alevras T, Moya Mateo EM, Hanzu FA. Differences in the clinical and hormonal presentation of patients with familial and sporadic primary aldosteronism. Front Endocrinol (Lausanne) 2024; 15:1336306. [PMID: 38495792 PMCID: PMC10940345 DOI: 10.3389/fendo.2024.1336306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose To compare the clinical and hormonal characteristics of patients with familial hyperaldosteronism (FH) and sporadic primary aldosteronism (PA). Methods A systematic review of the literature was performed for the identification of FH patients. The SPAIN-ALDO registry cohort of patients with no suspicion of FH was chosen as the comparator group (sporadic group). Results A total of 360 FH (246 FH type I, 73 type II, 29 type III, and 12 type IV) cases and 830 sporadic PA patients were included. Patients with FH-I were younger than sporadic cases, and women were more commonly affected (P = 0.003). In addition, the plasma aldosterone concentration (PAC) was lower, plasma renin activity (PRA) higher, and hypokalemia (P < 0.001) less frequent than in sporadic cases. Except for a younger age (P < 0.001) and higher diastolic blood pressure (P = 0.006), the clinical and hormonal profiles of FH-II and sporadic cases were similar. FH-III had a distinct phenotype, with higher PAC and higher frequency of hypokalemia (P < 0.001), and presented 45 years before sporadic cases. Nevertheless, the clinical and hormonal phenotypes of FH-IV and sporadic cases were similar, with the former being younger and having lower serum potassium levels. Conclusion In addition to being younger and having a family history of PA, FH-I and III share other typical characteristics. In this regard, FH-I is characterized by a low prevalence of hypokalemia and FH-III by a severe aldosterone excess causing hypokalemia in more than 85% of patients. The clinical and hormonal phenotype of type II and IV is similar to the sporadic cases.
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Endocrinology and Nutrition Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto de Investigación Biomédica Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Paola Parra
- Endocrinology and Nutrition Department, Hospital Universitario La Paz, Madrid, Spain
| | | | - Miguel Paja Fano
- Endocrinology and Nutrition Department, OSI Bilbao-Basurto, Hospital Universitario de Basurto, Bilbao, Spain
- Medicine Department, Basque Country University, Bilbao, Spain
| | - Marga González Boillos
- Endocrinology and Nutrition Department, Hospital Universitario de Castellón, Castellón, Spain
| | - Eider Pascual-Corrales
- Endocrinology and Nutrition Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto de Investigación Biomédica Ramón y Cajal (IRYCIS), Madrid, Spain
| | | | | | | | - Emilia Gómez Hoyos
- Endocrinology and Nutrition Department, Hospital Universitario de Valladolid, Valladolid, Spain
| | - Rui Ferreira
- Endocrinology and Nutrition Department, Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | - Iñigo García Sanz
- General and Digestive Surgery Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Mònica Recasens Sala
- Endocrinology and Nutrition Department, Hospital De Girona Doctor Josep Trueta, Girona, Spain
| | | | - María José Picón César
- Endocrinology and Nutrition Department, Hospital Universitario Virgen de la Victoria de Málaga, IBIMA, Malaga, Spain
- CIBEROBN, Madrid, Spain
| | | | - Carolina M. Perdomo
- Endocrinology and Nutrition Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Laura Manjón-Miguélez
- Endocrinology and Nutrition Department, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rogelio García Centeno
- Endocrinology and Nutrition Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Ángel Rebollo Román
- Endocrinology and Nutrition Department, Hospital Reina Sofía, Córdoba, Spain
| | - Paola Gracia Gimeno
- Endocrinology and Nutrition Department, Hospital Royo Villanova, Zaragoza, Spain
| | - Cristina Robles Lázaro
- Endocrinology and Nutrition Department, Complejo Universitario de Salamanca, Salamanca, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clinic, IDIBAPS, CIBERehd, Barcelona, Spain
| | - María Calatayud
- Endocrinology and Nutrition Department, Hospital Doce de Octubre, Madrid, Spain
| | | | - Diego Meneses
- Endocrinology and Nutrition Department, Hospital Universitario de Castellón, Castellón, Spain
| | - Miguel Sampedro Nuñez
- Endocrinology and Nutrition Department, Hospital Universitario La Princesa, Madrid, Spain
| | | | - Elena Mena Ribas
- Endocrinology and Nutrition Department, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Alicia Sanmartín Sánchez
- Endocrinology and Nutrition Department, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Cesar Gonzalvo Diaz
- Endocrinology and Nutrition Department, Hospital Universitario De Albacete, Albacete, Spain
| | - Cristina Lamas
- Endocrinology and Nutrition Department, Hospital Universitario De Albacete, Albacete, Spain
| | - María del Castillo Tous
- Endocrinology and Nutrition Department, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | | | | | | | - Felicia A. Hanzu
- Endocrinology and Nutrition Department, Hospital Clinic, IDIPAS, Barcelona, Spain
| |
Collapse
|
3
|
Faucz FR, Maria AG, Stratakis CA. Molecular tools for diagnosing diseases of the adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2023; 30:154-160. [PMID: 37067987 DOI: 10.1097/med.0000000000000809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
PURPOSE OF REVIEW The adrenal glands produce some of the most essential for life hormones, including cortisol and other steroids, and catecholamines. The former is produced from the adrenal cortex, whereas the latter is from the medulla. The two parts are anatomically and functionally distinct and it would be impossible in the context of one short article to cover all molecular updates on both the cortex and the medulla. Thus, in this review, we focus on the molecular tools available for diagnosing adrenocortical diseases, such as adrenal insufficiency, Cushing and Conn syndromes, and their potential for advancing medical care and clinical outcome. RECENT FINDINGS The advent of next generation sequencing opened doors for finding genetic diseases and signaling pathways involved in adrenocortical diseases. In addition, the combination of molecular data and clinicopathologic assessment might be the best approach for an early and precise diagnosis contributing to therapeutic decisions and improvement of patient outcomes. SUMMARY Diagnosing adrenocortical diseases can be challenging; however, the progress of molecular tools for adrenocortical disease diagnosis has greatly contributed to early detection and to meliorate patient outcomes.
Collapse
Affiliation(s)
| | - Andrea G Maria
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Constantine A Stratakis
- ELPEN Pharmaceuticals, Pikermi & H. Dunant Hospital, Athens
- Human Genetics & Precision Medicine, IMBB, FORTH, Heraklion, Greece
| |
Collapse
|
4
|
Carsote M. The Entity of Connshing Syndrome: Primary Aldosteronism with Autonomous Cortisol Secretion. Diagnostics (Basel) 2022; 12:diagnostics12112772. [PMID: 36428832 PMCID: PMC9689802 DOI: 10.3390/diagnostics12112772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/22/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Connshing syndrome (CoSh) (adrenal-related synchronous aldosterone (A) and cortisol (C) excess) represents a distinct entity among PA (primary hyperaldosteronisms) named by W. Arlt et al. in 2017, but the condition has been studied for more than 4 decades. Within the last few years, this is one of the most dynamic topics in hormonally active adrenal lesions due to massive advances in steroids metabolomics, molecular genetics from CYP11B1/B2 immunostaining to genes constellations, as well as newly designated pathological categories according to the 2022 WHO classification. In gross, PA causes 4-10% of all high blood pressure (HBP) cases, and 20% of resistant HBP; subclinical Cushing syndrome (SCS) is identified in one-third of adrenal incidentalomas (AI), while CoSh accounts for 20-30% to 77% of PA subjects, depending on the tests used to confirm autonomous C secretion (ACS). The clinical picture overlaps with PA, hypercortisolemia being mild. ACS is suspected in PA if a more severe glucose and cardiovascular profile is identified, or there are larger tumours, ACS being an independent factor risk for kidney damage, and probably also for depression/anxiety and osteoporotic fractures. It seems that one-third of the PA-ACS group harbours mutations of C-related lines like PRKACA and GNAS. A novel approach means we should perform CYP11B2/CYP11B1 immunostaining; sometimes negative aldosteronoma for CYP11B1 is surrounded by micronodules or cell clusters with positive CYP11B1 to sustain the C excess. Pitfalls of hormonal assessments in CoSh include the index of suspicion (check for ACS in PA patients) and the interpretation of A/C ratio during adrenal venous sample. Laparoscopic adrenalectomy is the treatment of choice. Post-operative clinical remission rate is lower in CoSh than PA. The risk of clinically manifested adrenal insufficiency is low, but a synthetic ACTH stimulating testing might help to avoid unnecessary exposure to glucocorticoids therapy. Finally, postponing the choice of surgery may impair the outcome, having noted that long-term therapy with mineralocorticoids receptors antagonists might not act against excessive amounts of C. Awareness of CoSh improves management and overall prognosis.
Collapse
Affiliation(s)
- Mara Carsote
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy & C.I. Parhon National Institute of Endocrinology, 011683 Bucharest, Romania
| |
Collapse
|