1
|
Bantulà M, Arismendi E, Tubita V, Roca-Ferrer J, Mullol J, de Hollanda A, Sastre J, Valero A, Baos S, Cremades-Jimeno L, Cárdaba B, Picado C. Effect of Obesity on the Expression of Genes Associated with Severe Asthma-A Pilot Study. J Clin Med 2023; 12:4398. [PMID: 37445432 DOI: 10.3390/jcm12134398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Asthma is a complex condition resulting from the interaction of genes and environment. Obesity is a risk factor to develop asthma and contributes to poor response to asthma therapy and severity. The aim of the study was to evaluate the effect of obesity on the expression levels of genes previously associated with severe asthma. Three groups of subjects were studied: non-obese asthmatics (NOA), obese asthma patients (OA), and non-asthmatic obese subjects (O). Previously reported overexpressed (IL-10, MSR1, PHLDA1, SERPINB2, and CD86) and underexpressed genes (CHI3L1, CPA3, IL-8, and PI3) in severe asthma were analyzed by RT-qPCR in peripheral blood mononuclear cells (PBMCs). In the overexpressed genes, obesity significantly decreased the expression of MSR1 and PHLDA1 and had no effects on CD86, IL-10, and SERPINB2. In underexpressed genes, obesity did not affect PI3, CHI3L1, and IL-8 and significantly reduced CPA3 expression. The results of this study show that obesity should be included among the known factors that can contribute toward modifying the expression of genes associated with asthma and, in particular, severe asthma.
Collapse
Affiliation(s)
- Marina Bantulà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ebymar Arismendi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Valeria Tubita
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Jordi Roca-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Joaquim Mullol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Ana de Hollanda
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Fisopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Joaquín Sastre
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Allergy Service, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Faculty of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Antonio Valero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Allergy Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Selene Baos
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Lucía Cremades-Jimeno
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Blanca Cárdaba
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - César Picado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
2
|
Bezsonov E, Khotina V, Glanz V, Sobenin I, Orekhov A. Lipids and Lipoproteins in Atherosclerosis. Biomedicines 2023; 11:biomedicines11051424. [PMID: 37239095 DOI: 10.3390/biomedicines11051424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease [...].
Collapse
Affiliation(s)
- Evgeny Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution " Petrovsky National Research Centre of Surgery", 3 Tsyurupa Street, 117418 Moscow, Russia
- Department of Biology and General Genetics, I. M. Sechenov First Moscow State Medical University, 8 Izmailovsky Boulevard, 105043 Moscow, Russia
| | - Victoria Khotina
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Victor Glanz
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution " Petrovsky National Research Centre of Surgery", 3 Tsyurupa Street, 117418 Moscow, Russia
| | - Igor Sobenin
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 15a 3rd Cherepkovskaya Street, 121552 Moscow, Russia
| | - Alexander Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution " Petrovsky National Research Centre of Surgery", 3 Tsyurupa Street, 117418 Moscow, Russia
| |
Collapse
|
3
|
LOX-1 Activation by oxLDL Induces AR and AR-V7 Expression via NF-κB and STAT3 Signaling Pathways Reducing Enzalutamide Cytotoxic Effects. Int J Mol Sci 2023; 24:ijms24065082. [PMID: 36982155 PMCID: PMC10049196 DOI: 10.3390/ijms24065082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
The oxidized low-density lipoprotein receptor 1 (LOX-1) is one of the most important receptors for modified LDLs, such as oxidated (oxLDL) and acetylated (acLDL) low-density lipoprotein. LOX-1 and oxLDL are fundamental in atherosclerosis, where oxLDL/LOX1 promotes ROS generation and NF-κB activation inducing the expression of IL-6, a STAT3 activator. Furthermore, LOX-1/oxLDL function has been associated with other diseases, such as obesity, hypertension, and cancer. In prostate cancer (CaP), LOX-1 overexpression is associated with advanced stages, and its activation by oxLDL induces an epithelial-mesenchymal transition, increasing angiogenesis and proliferation. Interestingly, enzalutamide-resistant CaP cells increase the uptake of acLDL. Enzalutamide is an androgen receptor (AR) antagonist for castration-resistant prostate cancer (CRPC) treatment, and a high percentage of patients develop a resistance to this drug. The decreased cytotoxicity is promoted in part by STAT3 and NF-κB activation that induces the secretion of the pro-inflammatory program and the expression of AR and its splicing variant AR-V7. Here, we demonstrate for the first time that oxLDL/LOX-1 increases ROS levels and activates NF-κB, inducing IL-6 secretion and the activation of STAT3 in CRPC cells. Furthermore, oxLDL/LOX1 increases AR and AR-V7 expression and decreases enzalutamide cytotoxicity in CRPC. Thus, our investigation suggests that new factors associated with cardiovascular pathologies, such as LOX-1/oxLDL, may also promote important signaling axes for the progression of CRPC and its resistance to drugs used for its treatment.
Collapse
|
4
|
Sheng W, Ji G, Zhang L. Role of macrophage scavenger receptor MSR1 in the progression of non-alcoholic steatohepatitis. Front Immunol 2022; 13:1050984. [PMID: 36591228 PMCID: PMC9797536 DOI: 10.3389/fimmu.2022.1050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD), and the dysregulation of lipid metabolism and oxidative stress are the typical features. Subsequent dyslipidemia and oxygen radical production may render the formation of modified lipids. Macrophage scavenger receptor 1 (MSR1) is responsible for the uptake of modified lipoprotein and is one of the key molecules in atherosclerosis. However, the unrestricted uptake of modified lipoproteins by MSR1 and the formation of cholesterol-rich foamy macrophages also can be observed in NASH patients and mouse models. In this review, we highlight the dysregulation of lipid metabolism and oxidative stress in NASH, the alteration of MSR1 expression in physiological and pathological conditions, the formation of modified lipoproteins, and the role of MSR1 on macrophage foaming and NASH development and progression.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Mao L, Wang L, Bennett S, Xu J, Zou J. Effects of follicle-stimulating hormone on fat metabolism and cognitive impairment in women during menopause. Front Physiol 2022; 13:1043237. [PMID: 36545281 PMCID: PMC9760686 DOI: 10.3389/fphys.2022.1043237] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
Lipid metabolism disorder is a common pathological manifestation of menopausal women, and is also an important risk factor for many diseases at this stage of life. Epidemiological studies have shown that high levels of follicle-stimulating hormone (FSH) in menopausal women are closely associated with changes in body composition, central obesity, and cognitive decline. Exogenous FSH causes growth and proliferation of adipose, whereas blockage of the FSH signaling pathway leads to decline in adipose. Mechanistically, FSH, FSH receptor (FSHR), G protein coupling, gene mutation and other pathways are involved in adipogenesis and cognitive impairment. Here, we review the critical role and potential interactions of FSH in adipogenesis and cognitive impairment in menopausal women. Further understanding of the exact mechanisms of FSH aggravating obesity and cognitive impairment may provide a new perspective for promoting healthy aging in menopausal women.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lian Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
6
|
Ben Ammar R, Mohamed ME, Alfwuaires M, Abdulaziz Alamer S, Bani Ismail M, Veeraraghavan VP, Sekar AK, Ksouri R, Rajendran P. Anti-Inflammatory Activity of Geraniol Isolated from Lemon Grass on Ox-LDL-Stimulated Endothelial Cells by Upregulation of Heme Oxygenase-1 via PI3K/Akt and Nrf-2 Signaling Pathways. Nutrients 2022; 14:4817. [PMID: 36432506 PMCID: PMC9695721 DOI: 10.3390/nu14224817] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Among the world's leading causes of cardiovascular disease, atherosclerosis is a chronic inflammatory disorder that affects the arteries. Both vasodilation and vasoconstriction, low levels of nitric oxide and high levels of reactive oxygen species and pro-inflammatory factors characterize dysfunctional blood vessels. Hypertension, and atherosclerosis, all start with this dysfunction. Geraniol, a compound of acyclic monoterpene alcohol, found in plants such as geranium, lemongrass and rose, is a primary constituent of essential oils. It shows a variety of pharmacological properties. This study aimed to investigate the impact of geraniol on Ox-LDL-induced stress and inflammation in human umbilical vein endothelial cells. In this study, HUVECs were treated with Ox-LDL or geraniol at different dose concentrations. MTT assay, Western blot, ROS generation and DNA fragmentation were used to evaluate geraniol's effects on Ox-LDL-induced HUVECs inflammation. The results show that geraniol pre-incubation ameliorates Ox-LDL-mediated HUVECs cytotoxicity and DNA fragmentation. The geraniol inhibited the production of pro-inflammatory cytokines by Ox-LDL, including TNF-α, IL-6 and IL-1β. In Ox-LDL-stimulated HUVECs, geraniol suppresses the nuclear translocation and activity of NF-ᴋB as well as phosphorylation of IkBα. Moreover, geraniol activated the PI3K/AKT/NRF2 pathway in HUVECs, resulting in an increase in the expression of HO-1. Taking our data together, we can conclude that, in HUVECs, geraniol inhibits Ox-LDL-induced inflammation and oxidative stress by targeting PI3/AKT/NRF2.
Collapse
Affiliation(s)
- Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Maged Elsayed Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, University of Zagazig, Zagazig 44519, Egypt
| | - Manal Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sarah Abdulaziz Alamer
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohammad Bani Ismail
- Department of Basic Medical Sciences, School of Medicine, Aqaba Medical Sciences University, Aqaba 11191, Jordan
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Ashok Kumar Sekar
- Centre for Biotechnology, Anna University, Chennai 600025, Tamil Nadu, India
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
7
|
Tsai CY, Huang HT, Cheng HC, Wang J, Duh PJ, Hsu WH, Stettler M, Kuan YC, Lin YT, Hsu CR, Lee KY, Kang JH, Wu D, Lee HC, Wu CJ, Majumdar A, Liu WT. Screening for Obstructive Sleep Apnea Risk by Using Machine Learning Approaches and Anthropometric Features. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22228630. [PMID: 36433227 PMCID: PMC9694257 DOI: 10.3390/s22228630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 05/14/2023]
Abstract
Obstructive sleep apnea (OSA) is a global health concern and is typically diagnosed using in-laboratory polysomnography (PSG). However, PSG is highly time-consuming and labor-intensive. We, therefore, developed machine learning models based on easily accessed anthropometric features to screen for the risk of moderate to severe and severe OSA. We enrolled 3503 patients from Taiwan and determined their PSG parameters and anthropometric features. Subsequently, we compared the mean values among patients with different OSA severity and considered correlations among all participants. We developed models based on the following machine learning approaches: logistic regression, k-nearest neighbors, naïve Bayes, random forest (RF), support vector machine, and XGBoost. Collected data were first independently split into two data sets (training and validation: 80%; testing: 20%). Thereafter, we adopted the model with the highest accuracy in the training and validation stage to predict the testing set. We explored the importance of each feature in the OSA risk screening by calculating the Shapley values of each input variable. The RF model achieved the highest accuracy for moderate to severe (84.74%) and severe (72.61%) OSA. The level of visceral fat was found to be a predominant feature in the risk screening models of OSA with the aforementioned levels of severity. Our machine learning models can be employed to screen for OSA risk in the populations in Taiwan and in those with similar craniofacial structures.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- Centre for Transport Studies, Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
| | - Huei-Tyng Huang
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Hsueh-Chien Cheng
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton CB10 1RQ, UK
| | - Jieni Wang
- Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Ping-Jung Duh
- Cognitive Neuroscience, Division of Psychology and Language Science, University College London, London WC1H 0AP, UK
| | - Wen-Hua Hsu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Marc Stettler
- Centre for Transport Studies, Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
| | - Yi-Chun Kuan
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110301, Taiwan
- Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Yin-Tzu Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Chia-Rung Hsu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Jiunn-Horng Kang
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Research Center of Artificial Intelligence in Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan
| | - Dean Wu
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110301, Taiwan
- Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Hsin-Chien Lee
- Department of Psychiatry, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Cheng-Jung Wu
- Department of Otolaryngology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Arnab Majumdar
- Centre for Transport Studies, Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
- Correspondence: (A.M.); (W.-T.L.)
| | - Wen-Te Liu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Research Center of Artificial Intelligence in Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Correspondence: (A.M.); (W.-T.L.)
| |
Collapse
|
8
|
Schielke L, Zimmermann N, Hobelsberger S, Steininger J, Strunk A, Blau K, Hernandez J, Künzel S, Ziegenbalg R, Rösing S, Beissert S, Abraham S, Günther C. Metabolic Syndrome in Psoriasis Is Associated With Upregulation of CXCL16 on Monocytes and a Dysbalance in Innate Lymphoid Cells. Front Immunol 2022; 13:916701. [PMID: 35784287 PMCID: PMC9248801 DOI: 10.3389/fimmu.2022.916701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Psoriasis is frequently associated with the metabolic syndrome and occurs more often in obese individuals. In order to understand innate immune mechanisms mediating this inflammatory pattern we investigated expression of the chemokine and lipid scavenger receptor CXCL16 in patients with psoriasis and associated comorbidities. CXCL16 expression was enhanced on all monocyte subsets in psoriatic patients compared with healthy controls and positively correlated with psoriasis activity and severity index, body mass index and the risk for cardiovascular disease indicated by PROCAM score. The intensity of CXCL16 expression on monocytes further correlated with their capability to phagocytose oxidized LDL indicating the possibility to transform into foam cells in atherosclerotic plaques. Patients with psoriasis and atherosclerosis or obesity displayed elevated numbers of innate lymphoid cells in blood with specific increase of the IFN-γ or IL-17 producing ILC1 and ILC3 subpopulations. The expression of the CXCL16 receptor, CXCR6, was increased in ILCs and co-expressed with CCR6 but not CCR7 indicating their migratory potential to psoriatic skin or adipose tissue that is characterized by strong CXCL16 and CCL20 expression. This hypothesis was supported by the finding that the percentage of CXCR6 expressing ILCs was alleviated in blood of psoriatic patients. Together these data link a strong expression of CXCL16 to metabolic syndrome in psoriasis and indicate a possible link to ILC activation and tissue distribution in obese psoriatic patients. These data contribute to the understanding of the complex interaction of innate immunity and metabolic state in psoriasis.
Collapse
Affiliation(s)
- Lisa Schielke
- Department of Dermatology, University Hospital, Technical University Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | - Claudia Günther
- Department of Dermatology, University Hospital, Technical University Dresden, Dresden, Germany
| |
Collapse
|
9
|
Pramsohler S, Burtscher M, Rausch L, Netzer NC. Weight Loss and Fat Metabolism during Multi-Day High-Altitude Sojourns: A Hypothesis Based on Adipocyte Signaling. Life (Basel) 2022; 12:life12040545. [PMID: 35455035 PMCID: PMC9026814 DOI: 10.3390/life12040545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Several publications and random observations have reported weight loss in high-altitude sojourners of both sexes. This could be a result of multiple adaptations, which hypoxia and mountaineering provoke on a cellular and organic level. Several publications have discussed the effect on appetite-regulating hormones to be one of the main contributing factors. We aimed to review the available data and show the current state of knowledge regarding nutritional aspects in high altitude with a special focus on fatty dietary forms. To reach this aim we conducted a literature search via PubMed according to the PRISMA 2020 protocol to identify relevant studies. We found that very few studies cover this field with scientifically satisfying evidence. For final analysis, reviews as well as papers that were not clearly related to the topic were excluded. Six articles were included discussing hormonal influences and the impact of exercise on appetite regulation as well as genetic factors altering metabolic processes at altitude. Leptin expression seems to be the biggest contributor to appetite reduction at altitude with an initial increase followed by a decrease in the course of time at high altitude. Its expression is greatly dependent on the amount of white adipose tissue. Since the expression of leptin is associated with an increased β-oxidation of fatty acids, a high-fat diet could be advantageous at a certain time point in the course of high-altitude sojourns.
Collapse
Affiliation(s)
- Stephan Pramsohler
- Hermann Buhl Institute for Hypoxia and Sleep Medicine Research, 83043 Bad Aibling, Germany;
- Institute of Sports Science, University Innsbruck, 6020 Innsbruck, Austria; (M.B.); (L.R.)
- Department Medicine, Division of Sports Medicine and Rehabilitation, University Hospitals, 89070 Ulm, Germany
- Correspondence: ; Tel.: +49-(0)163-628-6366
| | - Martin Burtscher
- Institute of Sports Science, University Innsbruck, 6020 Innsbruck, Austria; (M.B.); (L.R.)
| | - Linda Rausch
- Institute of Sports Science, University Innsbruck, 6020 Innsbruck, Austria; (M.B.); (L.R.)
| | - Nikolaus C. Netzer
- Hermann Buhl Institute for Hypoxia and Sleep Medicine Research, 83043 Bad Aibling, Germany;
- Institute of Sports Science, University Innsbruck, 6020 Innsbruck, Austria; (M.B.); (L.R.)
- Department Medicine, Division of Sports Medicine and Rehabilitation, University Hospitals, 89070 Ulm, Germany
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bozen, Italy
| |
Collapse
|