1
|
Javid H, Oryani MA, Rezagholinejad N, Hashemzadeh A, Karimi-Shahri M. Unlocking the potential of RGD-conjugated gold nanoparticles: a new frontier in targeted cancer therapy, imaging, and metastasis inhibition. J Mater Chem B 2024; 12:10786-10817. [PMID: 39351647 DOI: 10.1039/d4tb00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
In the rapidly evolving field of cancer therapeutics, the potential of gold nanoparticles (AuNPs) conjugated with RGD peptides has emerged as a promising avenue for targeted therapy and imaging. Despite numerous studies demonstrating the effectiveness of RGD-conjugated AuNPs in specifically targeting tumor cells and enhancing radiation therapy (RT), a comprehensive review of these advancements is currently lacking. This review aims to fill this critical gap in the literature. Our analysis reveals that RGD-conjugated AuNPs have shown significant promise in improving the diagnosis and treatment of various types of cancer, including breast cancer. However, the full potential of this technology is yet to be realized. The development of multifunctional nanoplatforms incorporating AuNPs has opened new horizons for targeted therapy, dual-mode imaging, and inhibition of tumor growth and metastasis. This review is of paramount importance as it provides a comprehensive overview of the current state of research in this area, and highlights the areas where further research is needed. It is hoped that this review will inspire further investigations into this promising nanotechnology, ultimately leading to improved cancer diagnosis and therapy. Therefore, the findings presented in this review underscore the potential of AuNPs conjugated with RGD peptides as a revolutionary approach in cancer therapeutics. It is our fervent hope that this review will serve as a catalyst for further research in this exciting field.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
2
|
He T, Giacomini D, Tolomelli A, Baiula M, Gentilucci L. Conjecturing about Small-Molecule Agonists and Antagonists of α4β1 Integrin: From Mechanistic Insight to Potential Therapeutic Applications. Biomedicines 2024; 12:316. [PMID: 38397918 PMCID: PMC10887150 DOI: 10.3390/biomedicines12020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Integrins are heterodimeric cell-surface receptors that regulate cell-cell adhesion and cellular functions through bidirectional signaling. On the other hand, anomalous trafficking of integrins is also implicated in severe pathologies as cancer, thrombosis, inflammation, allergies, and multiple sclerosis. For this reason, they are attractive candidates as drug targets. However, despite promising preclinical data, several anti-integrin drugs failed in late-stage clinical trials for chronic indications, with paradoxical side effects. One possible reason is that, at low concentration, ligands proposed as antagonists may also act as partial agonists. Hence, the comprehension of the specific structural features for ligands' agonism or antagonism is currently of the utmost interest. For α4β1 integrin, the situation is particularly obscure because neither the crystallographic nor the cryo-EM structures are known. In addition, very few potent and selective agonists are available for investigating the mechanism at the basis of the receptor activation. In this account, we discuss the physiological role of α4β1 integrin and the related pathologies, and review the few agonists. Finally, we speculate on plausible models to explain agonism vs. antagonism by comparison with RGD-binding integrins and by analysis of computational simulations performed with homology or hybrid receptor structures.
Collapse
Affiliation(s)
- Tingting He
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
| | - Daria Giacomini
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
| | - Alessandra Tolomelli
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
| | - Monica Baiula
- Department of Pharmacology and Biotechnology (FABIT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy;
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
- Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| |
Collapse
|
3
|
Baiula M, Anselmi M, Musiani F, Ghidini A, Carbone J, Caligiana A, Maurizio A, Spampinato S, Gentilucci L. Design, Pharmacological Characterization, and Molecular Docking of Minimalist Peptidomimetic Antagonists of α 4β 1 Integrin. Int J Mol Sci 2023; 24:ijms24119588. [PMID: 37298541 DOI: 10.3390/ijms24119588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Integrin receptors mediate cell-cell interactions via the recognition of cell-adhesion glycoproteins, as well as via the interactions of cells with proteins of the extracellular matrix, and upon activation they transduce signals bi-directionally across the cell membrane. In the case of injury, infection, or inflammation, integrins of β2 and α4 families participate in the recruitment of leukocytes, a multi-step process initiated by the capturing of rolling leukocytes and terminated by their extravasation. In particular, α4β1 integrin is deeply involved in leukocyte firm adhesion preceding extravasation. Besides its well-known role in inflammatory diseases, α4β1 integrin is also involved in cancer, being expressed in various tumors and showing an important role in cancer formation and spreading. Hence, targeting this integrin represents an opportunity for the treatment of inflammatory disorders, some autoimmune diseases, and cancer. In this context, taking inspiration from the recognition motives of α4β1 integrin with its natural ligands FN and VCAM-1, we designed minimalist α/β hybrid peptide ligands, with our approach being associated with a retro strategy. These modifications are expected to improve the compounds' stability and bioavailability. As it turned out, some of the ligands were found to be antagonists, being able to inhibit the adhesion of integrin-expressing cells to plates coated with the natural ligands without inducing any conformational switch and any activation of intracellular signaling pathways. An original model structure of the receptor was generated using protein-protein docking to evaluate the bioactive conformations of the antagonists via molecular docking. Since the experimental structure of α4β1 integrin is still unknown, the simulations might also shed light on the interactions between the receptor and its native protein ligands.
Collapse
Affiliation(s)
- Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Fanin 40, 40126 Bologna, Italy
| | - Alessia Ghidini
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Jacopo Carbone
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Alberto Caligiana
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Andrea Maurizio
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Health Sciences & Technologies (HST) CIRI, University of Bologna, 40064 Ozzano Emilia, Italy
| |
Collapse
|
4
|
Anselmi M, Baiula M, Spampinato S, Artali R, He T, Gentilucci L. Design and Pharmacological Characterization of α 4β 1 Integrin Cyclopeptide Agonists: Computational Investigation of Ligand Determinants for Agonism versus Antagonism. J Med Chem 2023; 66:5021-5040. [PMID: 36976921 PMCID: PMC10108353 DOI: 10.1021/acs.jmedchem.2c02098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
α4β1 integrin is a cell adhesion receptor deeply involved in the migration and accumulation of leukocytes. Therefore, integrin antagonists that inhibit leukocytes recruitment are currently regarded as a therapeutic opportunity for the treatment of inflammatory disorder, including leukocyte-related autoimmune diseases. Recently, it has been suggested that integrin agonists capable to prevent the release of adherent leukocytes might serve as therapeutic agents as well. However, very few α4β1 integrin agonists have been discovered so far, thus precluding the investigation of their potential therapeutic efficacy. In this perspective, we synthesized cyclopeptides containing the LDV recognition motif found in the native ligand fibronectin. This approach led to the discovery of potent agonists capable to increase the adhesion of α4 integrin-expressing cells. Conformational and quantum mechanics computations predicted distinct ligand-receptor interactions for antagonists or agonists, plausibly referable to receptor inhibition or activation.
Collapse
Affiliation(s)
- Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | | | - Tingting He
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| |
Collapse
|
5
|
Kim KA, Vellampatti S, Kim BC. Characterization of Integrin Molecular Tension of Human Breast Cancer Cells on Anisotropic Nanopatterns. Front Mol Biosci 2022; 9:825970. [PMID: 35755806 PMCID: PMC9218603 DOI: 10.3389/fmolb.2022.825970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Physical interactions between cells and micro/nanometer-sized architecture presented in an extracellular matrix (ECM) environment significantly influence cell adhesion and morphology, often facilitating the incidence of diseases, such as cancer invasion and metastasis. Sensing and responding to the topographical cues are deeply associated with a physical interplay between integrins, ligands, and mechanical force transmission, ultimately determining diverse cell behavior. Thus, how the tension applied to the integrin-ligand bonds controls cells' response to the topographical cues needs to be elucidated through quantitative analysis. Here, in this brief research report, we reported a novel platform, termed "topo-tension gauge tether (TGT)," to visualize single-molecule force applied to the integrin-ligand on the aligned anisotropic nanopatterns. Using the topo-TGT assay, first, topography-induced adhesion and morphology of cancerous and normal cells were compared with the pre-defined peak integrin tension. Next, spatial integrin tensions underneath cells were identified using reconstructed integrin tension maps. As a result, we characterized each cell's capability to comply with nanotopographies and the magnitude of the spatial integrin tension. Altogether, the quantitative information on integrin tension will be a valuable basis for understanding the biophysical mechanisms underlying the force balance influencing adhesion to the topographical cues.
Collapse
Affiliation(s)
- Kyung Ah Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Srivithya Vellampatti
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Byoung Choul Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| |
Collapse
|