1
|
Aragón-Navas A, Rodrigo MJ, Munuera I, García-Herranz D, Subías M, Villacampa P, García-Feijoo J, Pablo L, Garcia-Martin E, Herrero-Vanrell R, Bravo-Osuna I. Multi-loaded PLGA microspheres as neuroretinal therapy in a chronic glaucoma animal model. Drug Deliv Transl Res 2025; 15:1660-1684. [PMID: 39361228 PMCID: PMC11968513 DOI: 10.1007/s13346-024-01702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 04/04/2025]
Abstract
This work focused on the co-encapsulation and simultaneous co-delivery of three different neuroprotective drugs in PLGA (poly(lactic-co-glycolic acid) microspheres for the treatment of glaucoma. For formulation optimization, dexamethasone (anti-inflammatory) and ursodeoxycholic acid (anti-apoptotic) were co-loaded by the solid-in-oil-in-water emulsion solvent extraction-evaporation technique as a first step. The incorporation of a water-soluble co-solvent (ethanol) and different amounts of dexamethasone resulted critical for the encapsulation of the neuroprotective agents and their initial release. The optimized formulation was obtained with 60 mg of dexamethasone and using an 80:20 dichloromethane:ethanol ratio. In the second step in the microencapsulation process, the incorporation of the glial cell line-derived neurotrophic factor (GDNF) was performed. The final prototype showed encapsulation efficiencies for each component above 50% with suitable properties for long-term application for at least 3 months. Physicochemical studies were performed by SEM, TEM, DSC, XRD, and gas chromatography. The evaluation of the kinetic release by the Gallagher-Corrigan analysis with Gorrasi correction helped to understand the influence of the co-microencapsulation on the delivery of the different actives from the optimized formulation. The final prototype was tested in a chronic glaucoma animal model. Rats received two intravitreal injections of the neuroprotective treatment within a 24-week follow-up study. The proposed formulation improved retinal ganglion cell (RGC) functionality examined by electroretinography. Also, it was able to maintain a neuroretinal thickness similar to that of healthy animals scanned by in vivo optical coherence tomography, and a higher RGC count on histology compared to glaucomatous animals at the end of the study.
Collapse
Affiliation(s)
- Alba Aragón-Navas
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Maria Jesus Rodrigo
- National Ocular Research Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002), Carlos III Health Institute, Madrid, Spain
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Inés Munuera
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - David García-Herranz
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Manuel Subías
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
- Biotech Vision, Instituto Oftalmologico Quiron, Zaragoza, Spain
| | - Pilar Villacampa
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga S/N, 08907, L'Hospitalet de Llobregat, Spain
| | - Julián García-Feijoo
- Department of Ophthalmology, San Carlos Clinical Hospital, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Luis Pablo
- National Ocular Research Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002), Carlos III Health Institute, Madrid, Spain
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
- Biotech Vision, Instituto Oftalmologico Quiron, Zaragoza, Spain
| | - Elena Garcia-Martin
- National Ocular Research Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002), Carlos III Health Institute, Madrid, Spain
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Rocio Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain.
- University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain.
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
2
|
Wang D, Pu Y, Gao X, Zeng L, Li H. Potential Functions and Causal Associations of GNLY in Primary Open-Angle Glaucoma: Integration of Blood-Derived Proteome, Transcriptome, and Experimental Verification. J Inflamm Res 2025; 18:367-380. [PMID: 39802509 PMCID: PMC11725236 DOI: 10.2147/jir.s497525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Genome-wide association studies (GWAS) have identified multiple genetic loci associated with primary open-angle glaucoma (POAG). However, the mechanisms by which these loci contribute to POAG progression remain unclear. This study aimed to identify potential causative genes involved in the development of POAG. Methods We utilized multi-dimensional high-throughput data, integrating proteome-wide association study(PWAS), transcriptome-wide association study (TWAS), and summary data-based Mendelian randomization (SMR) analysis. This approach enabled the identification of genes influencing POAG risk by affecting gene expression and protein concentrations in the bloodstream. The key gene was validated through enzyme-linked immunosorbent assay (ELISA) analysis. Results PWAS identified 86 genes associated with altered blood protein levels in POAG patients. Of these, eight genes (SFTPD, CSK, COL18A1, TCN2, GZMK, RAB2A, TEK, and GNLY) were identified as likely causative for POAG (P SMR < 0.05). TWAS revealed that GNLY was significantly associated with POAG at the gene expression level. GNLY-interacting genes were found to play roles in immune dysregulation, inflammation, and apoptosis. Clinical and cell-based validation confirmed reduced GNLY expression in POAG groups. Conclusion This study reveals GNLY as a significant potential therapeutic target for managing primary open-angle glaucoma.
Collapse
Affiliation(s)
- Dangdang Wang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Yanyu Pu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Xi Gao
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Lihong Zeng
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Hong Li
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| |
Collapse
|
3
|
Fan W, Miller DA, Chang S, Kweon J, Yeo WH, Grannonico M, Liu X, Zhang HF. Longitudinal imaging of vitreal hyperreflective foci in mice with acute optic nerve damage using visible-light optical coherence tomography. OPTICS LETTERS 2024; 49:1880-1883. [PMID: 38621029 PMCID: PMC11217911 DOI: 10.1364/ol.512029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/25/2024] [Indexed: 04/17/2024]
Abstract
Hyperreflective foci (HRFs) appear in optical coherence tomography (OCT) images of the retina and vitreous of patients with various ocular diseases. HRFs are hypothesized to be immune cells that appear in response to ischemia or tissue damage. To accurately identify HRFs and establish their clinical significance, it is necessary to replicate the detection of similar patterns in vivo in a small animal model. We combined visible-light OCT with temporal speckle averaging (TSA) to visualize and track vitreal HRFs (VHRFs) densities for three days after an optic nerve crush (ONC) injury. Resulting vis-OCT images revealed that VHRF density significantly increased approximately 10-fold at 12 h after ONC and returned to baseline three days after ONC. Additional immunohistochemistry results confirmed these VHRFs as inflammatory cells induced from optic nerve damage.
Collapse
Affiliation(s)
- Weijia Fan
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - David A. Miller
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Shichu Chang
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Junghun Kweon
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Wei-Hong Yeo
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Marta Grannonico
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
4
|
Aragón-Navas A, López-Cano JJ, Johnson M, A S, Vicario-de-la-Torre M, Andrés-Guerrero V, Tai H, Wang W, Bravo-Osuna I, Herrero-Vanrell R. Smart biodegradable hydrogels: Drug-delivery platforms for treatment of chronic ophthalmic diseases affecting the back of the eye. Int J Pharm 2024; 649:123653. [PMID: 38036194 DOI: 10.1016/j.ijpharm.2023.123653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
This paper aims to develop smart hydrogels based on functionalized hyaluronic acid (HA) and PLGA-PEG-PLGA (PLGA,poly-(DL-lactic-co-glycolic acid); PEG,polyethylene glycol) for use as intraocular drug-delivery platforms. Anti-inflammatory agent dexamethasone-phosphate (0.2 %w/v) was the drug selected to load on the hydrogels. Initially, different ratios of HA-aldehyde (HA-CHO) and thiolated-HA (HA-SH) were assayed, selecting as optimal concentrations 2 and 3 % (w/v), respectively. Optimized HA hydrogel formulations presented fast degradation (8 days) and drug release (91.46 ± 3.80 % in 24 h), thus being suitable for short-term intravitreal treatments. Different technology-based strategies were adopted to accelerate PLGA-PEG-PLGA water solubility, e.g. substituting PEG1500 in synthesis for higher molecular weight PEG3000 or adding cryopreserving substances to the buffer dissolution. PEG1500 was chosen to continue optimization and the final PLGA-PEG-PLGA hydrogels (PPP1500) were dissolved in trehalose or mannitol carbonate buffer. These presented more sustained release (71.77 ± 1.59 % and 73.41 ± 0.83 % in 24 h, respectively) and slower degradation (>14 days). In vitro cytotoxicity studies in the retinal-pigmented epithelial cell line (RPE-1) demonstrated good tolerance (viability values > 90 %). PLGA-PEG-PLGA hydrogels are proposed as suitable candidates for long-term intravitreal treatments. Preliminary wound healing studies with PLGA-PEG-PLGA hydrogels suggested faster proliferation at 8 h than controls.
Collapse
Affiliation(s)
- Alba Aragón-Navas
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - José Javier López-Cano
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Marta Vicario-de-la-Torre
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Hongyun Tai
- Blafar Ltd., Belfield Innovation Park, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain; National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain; University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain; National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain; University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
5
|
Rodrigo MJ, Martinez-Rincon T, Subias M, Mendez-Martinez S, Garcia-Herranz D, Garcia-Feijoo J, Herrero-Vanrell R, Pablo L, Bravo-Osuna I, Munuera I, Garcia-Martin E. Influence of sex on chronic steroid-induced glaucoma: 24-Weeks follow-up study in rats. Exp Eye Res 2024; 238:109736. [PMID: 38036216 DOI: 10.1016/j.exer.2023.109736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
The objective was to evaluate ocular changes based on sex in steroid-induced glaucoma models in rats comparing healthy controls, over 24 weeks follow-up. Eighty-nine Long-Evans rats (38 males and 51 females) with steroid-induced glaucoma were analysed. Two steroid-induced glaucoma models were generated by injecting poly-co-lactic-glycolic acid microspheres loaded with dexamethasone (MMDEX model) and dexamethasone-fibronectin (MMDEXAFIBRO model) into the ocular anterior chamber. Intraocular pressure was measured by rebound tonometer Tonolab®. Neuroretinal function was analysed using dark- and light-adapted electroretinography (Roland consult® RETIanimal ERG), and structure was analysed using optical coherence tomography (OCT Spectralis, Heidelberg® Engineering) using Retina Posterior Pole, Retinal Nerve Fibre Layer and Ganglion Cell Layer protocols over 24 weeks. Males showed statistically (p < 0.05) higher intraocular pressure measurements. In both sexes and models neuroretinal thickness tended to decrease over time. In the MMDEX model, males showed higher IOP values and greatest percentage thickness loss in the Ganglion Cell Layer (p = 0.015). Females receiving MMDEXAFIBRO experienced large fluctuations in thickness, a higher percentage loss (on average) in Retina Posterior Pole (p = 0.035), Retinal Nerve Fibre Layer and Ganglion Cell Layer than aged-matched males, and the highest thickness loss rate by mmHg. Although no difference was found by sex in dark- and light-adapted electroretinography, increased amplitude in photopic negative response was found in MMDEX males and MMDEXAFIBRO females at 12 weeks. Although both glaucoma models used dexamethasone, different intraocular pressure and neuroretinal changes were observed depending on sex and other influential cofactors (fibronectin). Both sex and the induced glaucoma model influenced neuroretinal degeneration.
Collapse
Affiliation(s)
- M J Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain; National Ocular Researcha Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002). Carlos III Health Institute, Spain
| | - T Martinez-Rincon
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain
| | - M Subias
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain
| | - S Mendez-Martinez
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain
| | - D Garcia-Herranz
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Spain; Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain
| | - J Garcia-Feijoo
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain; Department of Ophthalmology, San Carlos Clinical Hospital, Complutense University of Madrid, Spain
| | - R Herrero-Vanrell
- National Ocular Researcha Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002). Carlos III Health Institute, Spain; Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain; University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Spain
| | - L Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain; National Ocular Researcha Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002). Carlos III Health Institute, Spain; Biotech Vision, Instituto Oftalmologico Quiron, Zaragoza, Spain
| | - I Bravo-Osuna
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Spain; Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain; University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Spain
| | - I Munuera
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain
| | - E Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain; National Ocular Researcha Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002). Carlos III Health Institute, Spain.
| |
Collapse
|
6
|
Munuera I, Aragon-Navas A, Villacampa P, Gonzalez-Cela MA, Subías M, Pablo LE, Garcia-Feijoo J, Herrero-Vanrell R, Garcia-Martin E, Bravo-Osuna I, Rodrigo MJ. Chronic Glaucoma Induced in Rats by a Single Injection of Fibronectin-Loaded PLGA Microspheres: IOP-Dependent and IOP-Independent Neurodegeneration. Int J Mol Sci 2023; 25:9. [PMID: 38203183 PMCID: PMC10779403 DOI: 10.3390/ijms25010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024] Open
Abstract
To evaluate a new animal model of chronic glaucoma induced using a single injection of fibronectin-loaded biodegradable PLGA microspheres (Ms) to test prolonged therapies. 30 rats received a single injection of fibronectin-PLGA-Ms suspension (MsF) in the right eye, 10 received non-loaded PLGA-Ms suspension (Control), and 17 were non-injected (Healthy). Follow-up was performed (24 weeks), evaluating intraocular pressure (IOP), optical coherence tomography (OCT), histology and electroretinography. The right eyes underwent a progressive increase in IOP, but only induced cohorts reached hypertensive values. The three cohorts presented a progressive decrease in ganglion cell layer (GCL) thickness, corroborating physiological age-related loss of ganglion cells. Injected cohorts (MsF > Control) presented greater final GCL thickness. Histological exams explain this paradox: the MsF cohort showed lower ganglion cell counts but higher astrogliosis and immune response. A sequential trend of functional damage was recorded using scotopic electroretinography (MsF > Control > Healthy). It seems to be a function-structure correlation: in significant astrogliosis, early functional damage can be detected by electroretinography, and structural damage can be detected by histological exams but not by OCT. Males presented higher IOP and retinal and GCL thicknesses and lower electroretinography. A minimally invasive chronic glaucoma model was induced by a single injection of biodegradable Ms.
Collapse
Affiliation(s)
- Ines Munuera
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
| | - Alba Aragon-Navas
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (A.A.-N.); (M.A.G.-C.); (R.H.-V.); (I.B.-O.)
| | - Pilar Villacampa
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga s/n, 08907 l’Hospitalet de Llobregat, Spain;
| | - Miriam A. Gonzalez-Cela
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (A.A.-N.); (M.A.G.-C.); (R.H.-V.); (I.B.-O.)
| | - Manuel Subías
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
- Biotech Vision SLP (Spin-Off Company), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain
| | - Luis E. Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
- Biotech Vision SLP (Spin-Off Company), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| | - Julian Garcia-Feijoo
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
- Department of Ophthalmology, San Carlos Clinical Hospital, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Rocio Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (A.A.-N.); (M.A.G.-C.); (R.H.-V.); (I.B.-O.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (A.A.-N.); (M.A.G.-C.); (R.H.-V.); (I.B.-O.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| | - Maria J. Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| |
Collapse
|
7
|
Rodrigo MJ, Bravo-Osuna I, Subias M, Montolío A, Cegoñino J, Martinez-Rincón T, Mendez-Martinez S, Aragón-Navas A, Garcia-Herranz D, Pablo LE, Herrero-Vanrell R, del Palomar AP, Garcia-Martin E. Tunable degrees of neurodegeneration in rats based on microsphere-induced models of chronic glaucoma. Sci Rep 2022; 12:20622. [PMID: 36450772 PMCID: PMC9712621 DOI: 10.1038/s41598-022-24954-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
This study compares four different animal models of chronic glaucoma against normal aging over 6 months. Chronic glaucoma was induced in 138 Long-Evans rats and compared against 43 aged-matched healthy rats. Twenty-five rats received episcleral vein sclerosis injections (EPIm cohort) while the rest were injected in the eye anterior chamber with a suspension of biodegradable microspheres: 25 rats received non-loaded microspheres (N-L Ms cohort), 45 rats received microspheres loaded with dexamethasone (MsDexa cohort), and 43 rats received microspheres co-loaded with dexamethasone and fibronectin (MsDexaFibro cohort). Intraocular pressure, neuroretinal function, structure and vitreous interface were evaluated. Each model caused different trends in intraocular pressure, produced specific retinal damage and vitreous signals. The steepest and strongest increase in intraocular pressure was seen in the EPIm cohort and microspheres models were more progressive. The EPIm cohort presented the highest vitreous intensity and percentage loss in the ganglion cell layer, the MsDexa cohort presented the greatest loss in the retinal nerve fiber layer, and the MsDexaFibro cohort presented the greatest loss in total retinal thickness. Function decreased differently among cohorts. Using biodegradable microspheres models it is possible to generate tuned neurodegeneration. These results support the multifactorial nature of glaucoma based on several noxa.
Collapse
Affiliation(s)
- María Jesús Rodrigo
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Irene Bravo-Osuna
- grid.4795.f0000 0001 2157 7667Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Manuel Subias
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Alberto Montolío
- grid.11205.370000 0001 2152 8769Biomaterials Group, Aragon Engineering Research Institute (I3a), University of Zaragoza, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - José Cegoñino
- grid.11205.370000 0001 2152 8769Biomaterials Group, Aragon Engineering Research Institute (I3a), University of Zaragoza, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Teresa Martinez-Rincón
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Silvia Mendez-Martinez
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Alba Aragón-Navas
- grid.4795.f0000 0001 2157 7667Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - David Garcia-Herranz
- grid.4795.f0000 0001 2157 7667Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Luis Emilio Pablo
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Rocío Herrero-Vanrell
- grid.4795.f0000 0001 2157 7667Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Amaya Pérez del Palomar
- grid.11205.370000 0001 2152 8769Biomaterials Group, Aragon Engineering Research Institute (I3a), University of Zaragoza, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Elena Garcia-Martin
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain ,C/Padre Arrupe, Servicio de Oftalmología, Edificio de Consultas Externas, Planta 1, 50009 Zaragoza, Spain
| |
Collapse
|