1
|
Martišková A, Sýkora M, Andelová N, Ferko M, Gawrys O, Andelová K, Kala P, Červenka L, Szeiffová Bačová B. Soluble Guanylate Cyclase Stimulator, BAY41-8543: A Promising Approach for the Treatment of Chronic Heart Failure Caused by Pressure and Volume Overload. Pharmacol Res Perspect 2025; 13:e70087. [PMID: 40159447 PMCID: PMC11955242 DOI: 10.1002/prp2.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 04/02/2025] Open
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality, often driven by prolonged exposure to pathological stimuli such as pressure and volume overload. These factors contribute to excessive oxidative stress, adverse cardiac remodeling, and dysregulation of the nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) signaling pathway. Given the urgent need for effective treatments, this study investigated the potential of sGC stimulators to mitigate HF progression. We utilized male hypertensive Ren-2 transgenic (TGR) rats and a volume-overload HF model induced by an aortocaval fistula (ACF). Rats received the sGC stimulator BAY 41-8543 (3 mg/kg/day) for 30 weeks, while normotensive Hannover Sprague-Dawley rats served as controls. At the study endpoint (40 weeks of age), left ventricular tissue was analyzed using mass spectrometry, Western blotting, and histological assessment. TGR rats treated with sGC stimulators exhibited a significant increase in key antioxidant proteins (SOD1, CH10, ACSF2, NDUS1, DHE3, GSTM2, and PCCA), suggesting enhanced resistance to oxidative stress. However, sGC stimulator treatment also upregulated extracellular matrix remodeling markers (MMP-2, TGF-β, and SMAD2/3), which are typically associated with fibrosis. Despite this, Masson's trichrome staining revealed reduced collagen deposition in both TGR and TGR-ACF rats receiving sGC stimulators. Notably, all untreated TGR-ACF rats succumbed before the study endpoint, preventing direct assessment of sGC stimulator effects in advanced HF. These findings highlight the therapeutic potential of sGC stimulators in HF, particularly through their antioxidant effects. However, their concurrent influence on fibrosis warrants further investigation to optimize treatment strategies.
Collapse
Affiliation(s)
- Adriana Martišková
- Centre of Experimental MedicineSlovak Academy of Sciences, Institute for Heart ResearchBratislavaSlovakia
| | - Matúš Sýkora
- Centre of Experimental MedicineSlovak Academy of Sciences, Institute for Heart ResearchBratislavaSlovakia
| | - Natália Andelová
- Centre of Experimental MedicineSlovak Academy of Sciences, Institute for Heart ResearchBratislavaSlovakia
| | - Miroslav Ferko
- Centre of Experimental MedicineSlovak Academy of Sciences, Institute for Heart ResearchBratislavaSlovakia
| | - Olga Gawrys
- Centre for Experimental MedicineInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Katarína Andelová
- Centre of Experimental MedicineSlovak Academy of Sciences, Institute for Heart ResearchBratislavaSlovakia
| | - Petr Kala
- Centre for Experimental MedicineInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Luděk Červenka
- Centre for Experimental MedicineInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Barbara Szeiffová Bačová
- Centre of Experimental MedicineSlovak Academy of Sciences, Institute for Heart ResearchBratislavaSlovakia
| |
Collapse
|
2
|
Červenka L, Husková Z, Kikerlová S, Gawrys O, Vacková Š, Škaroupková P, Sadowski J, Miklovič M, Molnár M, Táborský M, Melenovský V, Bader M. Transgenic rat with ubiquitous expression of angiotensin-(1-7)-producing fusion protein: a new tool to study the role of protective arm of the renin-angiotensin system in the pathophysiology of cardio-renal diseases. Hypertens Res 2025; 48:336-352. [PMID: 39537982 PMCID: PMC11700845 DOI: 10.1038/s41440-024-01995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
The aim of the present study was to assess systemic circulatory and tissue activities of both the classical arm and of the alternative arm of the renin-angiotensin system (RAS) in a new transgenic rat line (TG7371) that expresses angiotensin-(1-7) (ANG 1-7)-producing fusion protein; the results were compared with the activities measured in control transgene-negative Hannover Sprague-Dawley (HanSD) rats. Plasma and tissue concentrations of angiotensin II (ANG II) and ANG 1-7, and kidney mRNA expressions of receptors responsible for biological actions of ANG II and ANG 1-7 [i.e. ANG II type 1 and type 2 (AT1 and AT2) and Mas receptors] were assessed in TG7371 transgene-positive and in HanSD rats. We found that male TG7371 transgene-positive rats exhibited significantly elevated plasma, kidney, heart and lung ANG 1-7 concentrations as compared with control male HanSD rats; by contrast, there was no significant difference in ANG II concentrations and no significant differences in mRNA expression of AT1, AT2 and Mas receptors. In addition, we found that in male TG7371 transgene-positive rats blood pressure was lower than in male HanSD rats. These data indicate that the balance between the classical arm and the alternative arm of the RAS was in male TGR7371 transgene-positive rats markedly shifted in favor of the latter. In conclusion, TG7371 transgene-positive rats represent a new powerful tool to study the long-term role of the alternative arm of the RAS in the pathophysiology and potentially in the treatment of cardio-renal diseases.
Collapse
Affiliation(s)
- Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic.
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Olga Gawrys
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Šárka Vacková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Škaroupková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Janusz Sadowski
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Matúš Miklovič
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Matej Molnár
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Miloš Táborský
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
3
|
Miklovič M, Gawryś O, Honetschlägerová Z, Kala P, Husková Z, Kikerlová S, Vaňourková Z, Jíchová Š, Kvasilová A, Kitamoto M, Maxová H, Puertas-Frias G, Mráček T, Sedmera D, Melenovský V. Renal denervation improves cardiac function independently of afterload and restores myocardial norepinephrine levels in a rodent heart failure model. Hypertens Res 2024; 47:2718-2730. [PMID: 38302774 PMCID: PMC11456508 DOI: 10.1038/s41440-024-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/04/2023] [Accepted: 12/24/2023] [Indexed: 02/03/2024]
Abstract
Renal nerves play a critical role in cardiorenal interactions. Renal denervation (RDN) improved survival in some experimental heart failure (HF) models. It is not known whether these favorable effects are indirect, explainable by a decrease in vascular afterload, or diminished neurohumoral response in the kidneys, or whether RDN procedure per se has direct myocardial effects in the failing heart. To elucidate mechanisms how RDN affects failing heart, we studied load-independent indexes of ventricular function, gene markers of myocardial remodeling, and cardiac sympathetic signaling in HF, induced by chronic volume overload (aorto-caval fistula, ACF) of Ren2 transgenic rats. Volume overload by ACF led to left ventricular (LV) hypertrophy and dysfunction, myocardial remodeling (upregulated Nppa, MYH 7/6 genes), increased renal and circulating norepinephrine (NE), reduced myocardial NE content, increased monoaminoxidase A (MAO-A), ROS production and decreased tyrosine hydroxylase (+) nerve staining. RDN in HF animals decreased congestion in the lungs and the liver, improved load-independent cardiac function (Ees, PRSW, Ees/Ea ratio), without affecting arterial elastance or LV pressure, reduced adverse myocardial remodeling (Myh 7/6, collagen I/III ratio), decreased myocardial MAO-A and inhibited renal neprilysin activity. RDN increased myocardial expression of acetylcholinesterase (Ache) and muscarinic receptors (Chrm2), decreased circulating and renal NE, but increased myocardial NE content, restoring so autonomic control of the heart. These changes likely explain improvements in survival after RDN in this model. The results suggest that RDN has remote, load-independent and favorable intrinsic myocardial effects in the failing heart. RDN therefore could be a useful therapeutic strategy in HF.
Collapse
Affiliation(s)
- Matúš Miklovič
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
- Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Olga Gawryś
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | - Zuzana Honetschlägerová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | - Petr Kala
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
- Department of Cardiology, University Hospital Motol and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | - Zdeňka Vaňourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | - Šárka Jíchová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | - Alena Kvasilová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Misuzu Kitamoto
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Maxová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
- Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Tomáš Mráček
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vojtěch Melenovský
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic.
- Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic.
| |
Collapse
|
4
|
Honetschlägerová Z, Husková Z, Kikerlová S, Sadowski J, Kompanowska-Jezierska E, Táborský M, Vaňourková Z, Kujal P, Červenka L. Renal sympathetic denervation improves pressure-natriuresis relationship in cardiorenal syndrome: insight from studies with Ren-2 transgenic hypertensive rats with volume overload induced using aorto-caval fistula. Hypertens Res 2024; 47:998-1016. [PMID: 38302775 PMCID: PMC10994851 DOI: 10.1038/s41440-024-01583-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/03/2024]
Abstract
The aim was to evaluate the effects of renal denervation (RDN) on autoregulation of renal hemodynamics and the pressure-natriuresis relationship in Ren-2 transgenic rats (TGR) with aorto-caval fistula (ACF)-induced heart failure (HF). RDN was performed one week after creation of ACF or sham-operation. Animals were prepared for evaluation of autoregulatory capacity of renal blood flow (RBF) and glomerular filtration rate (GFR), and of the pressure-natriuresis characteristics after stepwise changes in renal arterial pressure (RAP) induced by aortic clamping. Their basal values of blood pressure and renal function were significantly lower than with innervated sham-operated TGR (p < 0.05 in all cases): mean arterial pressure (MAP) (115 ± 2 vs. 160 ± 3 mmHg), RBF (6.91 ± 0.33 vs. 10.87 ± 0.38 ml.min-1.g-1), urine flow (UF) (11.3 ± 1.79 vs. 43.17 ± 3.24 µl.min-1.g-1) and absolute sodium excretion (UNaV) (1.08 ± 0.27 vs, 6.38 ± 0.76 µmol.min-1.g-1). After denervation ACF TGR showed improved autoregulation of RBF: at lowest RAP level (80 mmHg) the value was higher than in innervated ACF TGR (6.92 ± 0.26 vs. 4.54 ± 0.22 ml.min-1.g-1, p < 0.05). Also, the pressure-natriuresis relationship was markedly improved after RDN: at the RAP of 80 mmHg UF equaled 4.31 ± 0.99 vs. 0.26 ± 0.09 µl.min-1.g-1 recorded in innervated ACF TGR, UNaV was 0.31 ± 0.05 vs. 0.04 ± 0.01 µmol min-1.g-1 (p < 0.05 in all cases). In conclusion, in our model of hypertensive rat with ACF-induced HF, RDN improved autoregulatory capacity of RBF and the pressure-natriuresis relationship when measured at the stage of HF decompensation.
Collapse
Affiliation(s)
- Zuzana Honetschlägerová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Miloš Táborský
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic
| | - Zdenka Vaňourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Kujal
- Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
5
|
Gawrys O, Husková Z, Škaroupková P, Honetschlägerová Z, Vaňourková Z, Kikerlová S, Melenovský V, Bačová BS, Sykora M, Táborský M, Červenka L. The treatment with sGC stimulator improves survival of hypertensive rats in response to volume-overload induced by aorto-caval fistula. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3757-3773. [PMID: 37338578 PMCID: PMC10643302 DOI: 10.1007/s00210-023-02561-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Heart failure (HF) has been declared as global pandemic and current therapies are still ineffective, especially in patients that develop concurrent cardio-renal syndrome. Considerable attention has been focused on the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway. In the current study, we aimed to investigate the effectiveness of sGC stimulator (BAY41-8543) with the same mode of action as vericiguat, for the treatment of heart failure (HF) with cardio-renal syndrome. As a model, we chose heterozygous Ren-2 transgenic rats (TGR), with high-output heart failure, induced by aorto-caval fistula (ACF). The rats were subjected into three experimental protocols to evaluate short-term effects of the treatment, impact on blood pressure, and finally the long-term survival lasting 210 days. As control groups, we used hypertensive sham TGR and normotensive sham HanSD rats. We have shown that the sGC stimulator effectively increased the survival of rats with HF in comparison to untreated animals. After 60 days of sGC stimulator treatment, the survival was still 50% compared to 8% in the untreated rats. One-week treatment with sGC stimulator increased the excretion of cGMP in ACF TGR (109 ± 28 nnmol/12 h), but the ACE inhibitor decreased it (-63 ± 21 nnmol/12 h). Moreover, sGC stimulator caused a decrease in SBP, but this effect was only temporary (day 0: 117 ± 3; day 2: 108 ± 1; day 14: 124 ± 2 mmHg). These results support the concept that sGC stimulators might represent a valuable class of drugs to battle heart failure especially with cardio-renal syndrome, but further studies are necessary.
Collapse
Affiliation(s)
- Olga Gawrys
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Zuzana Husková
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petra Škaroupková
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zuzana Honetschlägerová
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zdeňka Vaňourková
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Soňa Kikerlová
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Barbara Szeiffová Bačová
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Bratislava, Slovakia
| | - Matúš Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Bratislava, Slovakia
| | - Miloš Táborský
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic
| | - Luděk Červenka
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic
| |
Collapse
|
6
|
Renal Denervation Influences Angiotensin II Types 1 and 2 Receptors. Int J Nephrol 2022; 2022:8731357. [PMID: 36262553 PMCID: PMC9576444 DOI: 10.1155/2022/8731357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
The sympathetic and renin-angiotensin systems (RAS) are two critical regulatory systems in the kidney which affect renal hemodynamics and function. These two systems interact with each other so that angiotensin II (Ang II) has the presynaptic effect on the norepinephrine secretion. Another aspect of this interaction is that the sympathetic nervous system affects the function and expression of local RAS receptors, mainly Ang II receptors. Therefore, in many pathological conditions associated with an increased renal sympathetic tone, these receptors' expression changes and renal denervation can normalize these changes and improve the diseases. It seems that the renal sympathectomy can alter Ang II receptors expression and the distribution of RAS receptors in the kidneys, which influence renal functions.
Collapse
|