1
|
Parvanovova P, Hnilicova P, Kolisek M, Tatarkova Z, Halasova E, Kurca E, Holubcikova S, Koprusakova MT, Baranovicova E. Disturbances in Muscle Energy Metabolism in Patients with Amyotrophic Lateral Sclerosis. Metabolites 2024; 14:356. [PMID: 39057679 PMCID: PMC11278632 DOI: 10.3390/metabo14070356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease type of motor neuron disorder characterized by degeneration of the upper and lower motor neurons resulting in dysfunction of the somatic muscles of the body. The ALS condition is manifested in progressive skeletal muscle atrophy and spasticity. It leads to death, mostly due to respiratory failure. Within the pathophysiology of the disease, muscle energy metabolism seems to be an important part. In our study, we used blood plasma from 25 patients with ALS diagnosed by definitive El Escorial criteria according to ALSFR-R (Revised Amyotrophic Lateral Sclerosis Functional Rating Scale) criteria and 25 age and sex-matched subjects. Aside from standard clinical biochemical parameters, we used the NMR (nuclear magnetic resonance) metabolomics approach to determine relative plasma levels of metabolites. We observed a decrease in total protein level in blood; however, despite accelerated skeletal muscle catabolism characteristic for ALS patients, we did not detect changes in plasma levels of essential amino acids. When focused on alterations in energy metabolism within muscle, compromised creatine uptake was accompanied by decreased plasma creatinine. We did not observe changes in plasma levels of BCAAs (branched chain amino acids; leucine, isoleucine, valine); however, the observed decrease in plasma levels of all three BCKAs (branched chain alpha-keto acids derived from BCAAs) suggests enhanced utilization of BCKAs as energy substrate. Glutamine, found to be increased in blood plasma in ALS patients, besides serving for ammonia detoxification, could also be considered a potential TCA (tricarboxylic acid) cycle contributor in times of decreased pyruvate utilization. When analyzing the data by using a cross-validated Random Forest algorithm, it finished with an AUC of 0.92, oob error of 8%, and an MCC (Matthew's correlation coefficient) of 0.84 when relative plasma levels of metabolites were used as input variables. Although the discriminatory power of the system used was promising, additional features are needed to create a robust discriminatory model.
Collapse
Affiliation(s)
- Petra Parvanovova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.P.); (Z.T.); (S.H.)
| | - Petra Hnilicova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.H.); (M.K.); (E.H.)
| | - Martin Kolisek
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.H.); (M.K.); (E.H.)
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.P.); (Z.T.); (S.H.)
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.H.); (M.K.); (E.H.)
| | - Egon Kurca
- Department of Neurology, University Hospital Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia;
| | - Simona Holubcikova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.P.); (Z.T.); (S.H.)
| | - Monika Turcanova Koprusakova
- Department of Neurology, University Hospital Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia;
| | - Eva Baranovicova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.H.); (M.K.); (E.H.)
| |
Collapse
|
2
|
Guo K, Figueroa-Romero C, Noureldein MH, Murdock BJ, Savelieff MG, Hur J, Goutman SA, Feldman EL. Gut microbiome correlates with plasma lipids in amyotrophic lateral sclerosis. Brain 2024; 147:665-679. [PMID: 37721161 PMCID: PMC10834248 DOI: 10.1093/brain/awad306] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex, fatal neurodegenerative disease. Disease pathophysiology is incompletely understood but evidence suggests gut dysbiosis occurs in ALS, linked to impaired gastrointestinal integrity, immune system dysregulation and altered metabolism. Gut microbiome and plasma metabolome have been separately investigated in ALS, but little is known about gut microbe-plasma metabolite correlations, which could identify robust disease biomarkers and potentially shed mechanistic insight. Here, gut microbiome changes were longitudinally profiled in ALS and correlated to plasma metabolome. Gut microbial structure at the phylum level differed in ALS versus control participants, with differential abundance of several distinct genera. Unsupervised clustering of microbe and metabolite levels identified modules, which differed significantly in ALS versus control participants. Network analysis found several prominent amplicon sequence variants strongly linked to a group of metabolites, primarily lipids. Similarly, identifying the features that contributed most to case versus control separation pinpointed several bacteria correlated to metabolites, predominantly lipids. Mendelian randomization indicated possible causality from specific lipids related to fatty acid and acylcarnitine metabolism. Overall, the results suggest ALS cases and controls differ in their gut microbiome, which correlates with plasma metabolites, particularly lipids, through specific genera. These findings have the potential to identify robust disease biomarkers and shed mechanistic insight into ALS.
Collapse
Affiliation(s)
- Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claudia Figueroa-Romero
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mohamed H Noureldein
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin J Murdock
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Lopez-Bernal D, Balderas D, Ponce P, Rojas M, Molina A. Implications of Artificial Intelligence Algorithms in the Diagnosis and Treatment of Motor Neuron Diseases-A Review. Life (Basel) 2023; 13:life13041031. [PMID: 37109560 PMCID: PMC10146231 DOI: 10.3390/life13041031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Motor neuron diseases (MNDs) are a group of chronic neurological disorders characterized by the progressive failure of the motor system. Currently, these disorders do not have a definitive treatment; therefore, it is of huge importance to propose new and more advanced diagnoses and treatment options for MNDs. Nowadays, artificial intelligence is being applied to solve several real-life problems in different areas, including healthcare. It has shown great potential to accelerate the understanding and management of many health disorders, including neurological ones. Therefore, the main objective of this work is to offer a review of the most important research that has been done on the application of artificial intelligence models for analyzing motor disorders. This review includes a general description of the most commonly used AI algorithms and their usage in MND diagnosis, prognosis, and treatment. Finally, we highlight the main issues that must be overcome to take full advantage of what AI can offer us when dealing with MNDs.
Collapse
Affiliation(s)
- Diego Lopez-Bernal
- Tecnologico de Monterrey, National Department of Research, Puente 222, Del. Tlalpan, Mexico City 14380, Mexico
| | - David Balderas
- Tecnologico de Monterrey, National Department of Research, Puente 222, Del. Tlalpan, Mexico City 14380, Mexico
| | - Pedro Ponce
- Tecnologico de Monterrey, National Department of Research, Puente 222, Del. Tlalpan, Mexico City 14380, Mexico
| | - Mario Rojas
- Tecnologico de Monterrey, National Department of Research, Puente 222, Del. Tlalpan, Mexico City 14380, Mexico
| | - Arturo Molina
- Tecnologico de Monterrey, National Department of Research, Puente 222, Del. Tlalpan, Mexico City 14380, Mexico
| |
Collapse
|
4
|
Goutman SA, Boss J, Iyer G, Habra H, Savelieff MG, Karnovsky A, Mukherjee B, Feldman EL. Body mass index associates with amyotrophic lateral sclerosis survival and metabolomic profiles. Muscle Nerve 2023; 67:208-216. [PMID: 36321729 PMCID: PMC9957813 DOI: 10.1002/mus.27744] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION/AIMS Body mass index (BMI) is linked to amyotrophic lateral sclerosis (ALS) risk and prognosis, but additional research is needed. The aim of this study was to identify whether and when historical changes in BMI occurred in ALS participants, how these longer term trajectories associated with survival, and whether metabolomic profiles provided insight into potential mechanisms. METHODS ALS and control participants self-reported body height and weight 10 (reference) and 5 years earlier, and at study entry (diagnosis for ALS participants). Generalized estimating equations evaluated differences in BMI trajectories between cases and controls. ALS survival was evaluated by BMI trajectory group using accelerated failure time models. BMI trajectories and survival associations were explored using published metabolomic profiling and correlation networks. RESULTS Ten-year BMI trends differed between ALS and controls, with BMI loss in the 5 years before diagnosis despite BMI gains 10 to 5 years beforehand in both groups. An overall 10-year drop in BMI associated with a 27.1% decrease in ALS survival (P = .010). Metabolomic networks in ALS participants showed dysregulation in sphingomyelin, bile acid, and plasmalogen subpathways. DISCUSSION ALS participants lost weight in the 5-year period before enrollment. BMI trajectories had three distinct groups and the group with significant weight loss in the past 10 years had the worst survival. Participants with a high BMI and increase in weight in the 10 years before symptom onset also had shorter survival. Certain metabolomics profiles were associated with the BMI trajectories. Replicating these findings in prospective cohorts is warranted.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Boss
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Gayatri Iyer
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Hani Habra
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Alla Karnovsky
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
McCluskey G, Donaghy C, Morrison KE, McConville J, Duddy W, Duguez S. The Role of Sphingomyelin and Ceramide in Motor Neuron Diseases. J Pers Med 2022; 12:jpm12091418. [PMID: 36143200 PMCID: PMC9501626 DOI: 10.3390/jpm12091418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS), Spinal Bulbar Muscular Atrophy (SBMA), and Spinal Muscular Atrophy (SMA) are motor neuron diseases (MNDs) characterised by progressive motor neuron degeneration, weakness and muscular atrophy. Lipid dysregulation is well recognised in each of these conditions and occurs prior to neurodegeneration. Several lipid markers have been shown to predict prognosis in ALS. Sphingolipids are complex lipids enriched in the central nervous system and are integral to key cellular functions including membrane stability and signalling pathways, as well as being mediators of neuroinflammation and neurodegeneration. This review highlights the metabolism of sphingomyelin (SM), the most abundant sphingolipid, and of its metabolite ceramide, and its role in the pathophysiology of neurodegeneration, focusing on MNDs. We also review published lipidomic studies in MNDs. In the 13 studies of patients with ALS, 12 demonstrated upregulation of multiple SM species and 6 demonstrated upregulation of ceramides. SM species also correlated with markers of clinical progression in five of six studies. These data highlight the potential use of SM and ceramide as biomarkers in ALS. Finally, we review potential therapeutic strategies for targeting sphingolipid metabolism in neurodegeneration.
Collapse
Affiliation(s)
- Gavin McCluskey
- Personalised Medicine Center, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Department of Neurology, Altnagelvin Hospital, Derry, BT47 6SB, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
| | - Colette Donaghy
- Department of Neurology, Altnagelvin Hospital, Derry, BT47 6SB, UK
| | - Karen E. Morrison
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Faculty of Medicine, Health & Life Sciences, Queen’s University, Belfast BT9 6AG, UK
| | - John McConville
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Department of Neurology, Ulster Hospital, Dundonald, Belfast BT16 1RH, UK
| | - William Duddy
- Personalised Medicine Center, School of Medicine, Ulster University, Derry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Center, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Correspondence:
| |
Collapse
|
6
|
Merciai F, Musella S, Sommella E, Bertamino A, D'Ursi AM, Campiglia P. Development and application of a fast ultra-high performance liquid chromatography-trapped ion mobility mass spectrometry method for untargeted lipidomics. J Chromatogr A 2022; 1673:463124. [DOI: 10.1016/j.chroma.2022.463124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 12/18/2022]
|